ORE RESEARCH & EXPLORATION P/L ABN 28 006 859 856 37A Hosie Street · Bayswater North · VIC 3153 · AUSTRALIA • 61 3 9729 0333 • 7/2 61 3 9729 8338 • info@ore.com.au • www.ore.com.au # **CERTIFICATE OF ANALYSIS FOR** # Gold Ore (Ventersdorp Contact Reef, Mponeng (West Wits) Mine, Witwatersrand Basin, South Africa CERTIFIED REFERENCE MATERIAL OREAS 298 Table 1. Certified Values and Performance Gates for OREAS 298. | Constituent | Certified | P | Absolute \$ | Standard | Deviation | าร | Relative | Standard D | eviations | 5% w | indow | |---------------------------------------|-----------|-------|-------------|-------------|------------|-------------|----------|------------|-----------|-------|-------| | Constituent | Value | 1SD | 2SD
Low | 2SD
High | 3SD
Low | 3SD
High | 1RSD | 2RSD | 3RSD | Low | High | | Pb Fire Assay | | | | | | | | | | | | | Au, ppm | 34.99 | 0.832 | 33.33 | 36.65 | 32.49 | 37.48 | 2.38% | 4.75% | 7.13% | 33.24 | 36.74 | | Borate Fusion XRF | | | | | | | | | | | | | Al ₂ O ₃ , wt.% | 3.10 | 0.039 | 3.02 | 3.18 | 2.99 | 3.22 | 1.25% | 2.49% | 3.74% | 2.95 | 3.26 | | BaO, ppm | 250 | 55 | 140 | 359 | 86 | 413 | 21.89% | 43.77% | 65.66% | 237 | 262 | | CaO, wt.% | 0.615 | 0.008 | 0.599 | 0.632 | 0.590 | 0.640 | 1.34% | 2.69% | 4.03% | 0.584 | 0.646 | | Cr ₂ O ₃ , ppm | 199 | 16 | 167 | 232 | 151 | 248 | 8.13% | 16.26% | 24.39% | 189 | 209 | | Cu, ppm | 134 | 14 | 105 | 162 | 91 | 176 | 10.64% | 21.27% | 31.91% | 127 | 140 | | Fe ₂ O ₃ , wt.% | 2.93 | 0.025 | 2.88 | 2.98 | 2.85 | 3.00 | 0.87% | 1.73% | 2.60% | 2.78 | 3.07 | | K ₂ O, wt.% | 0.673 | 0.008 | 0.657 | 0.690 | 0.649 | 0.698 | 1.21% | 2.42% | 3.63% | 0.640 | 0.707 | | MgO, wt.% | 0.467 | 0.017 | 0.432 | 0.501 | 0.415 | 0.518 | 3.67% | 7.33% | 11.00% | 0.443 | 0.490 | | MnO, wt.% | 0.020 | 0.001 | 0.018 | 0.023 | 0.016 | 0.024 | 6.19% | 12.38% | 18.56% | 0.019 | 0.021 | | Na ₂ O, wt.% | 0.400 | 0.018 | 0.364 | 0.435 | 0.347 | 0.453 | 4.42% | 8.84% | 13.26% | 0.380 | 0.420 | | Ni, ppm | 55 | 12 | 31 | 80 | 19 | 92 | 21.91% | 43.82% | 65.73% | 53 | 58 | | P ₂ O ₅ , wt.% | 0.037 | 0.003 | 0.031 | 0.043 | 0.028 | 0.047 | 8.22% | 16.45% | 24.67% | 0.035 | 0.039 | | S, wt.% | 0.709 | 0.025 | 0.660 | 0.758 | 0.635 | 0.783 | 3.46% | 6.92% | 10.38% | 0.674 | 0.744 | SI unit equivalents: ppm (parts per million) \equiv mg/kg \equiv μ g/g \equiv 0.0001 wt.% \equiv 1000 ppb (parts per billion). Note 1: intervals may appear asymmetric due to rounding. Note 2: the number of decimal places quoted does not imply accuracy of the certified value to this level but are given to minimise rounding errors when calculating 2SD and 3SD windows. Document: COA-1452-OREAS298-R2 24-Feb-2020 (Template:BUP-70-10-01 Rev:2.0) ### Table 1 continued. | Table i Continued. | | | | | | | | | | | | |-------------------------------------|-----------------------------|-------|-------------|-------------|------------|-------------|------------|------------|-----------|-----------|----------| | October 1 | Certified | A | Absolute \$ | Standard | Deviation | าร | Relative | Standard D | eviations | 5% window | | | Constituent | Value | 1SD | 2SD
Low | 2SD
High | 3SD
Low | 3SD
High | 1RSD | 2RSD | 3RSD | Low | High | | Borate Fusion XRF | Borate Fusion XRF continued | | | | | | | | | | | | SiO ₂ , wt.% | 90.26 | 0.628 | 89.00 | 91.52 | 88.38 | 92.15 | 0.70% | 1.39% | 2.09% | 85.75 | 94.77 | | TiO ₂ , wt.% | 0.173 | 0.008 | 0.157 | 0.188 | 0.150 | 0.196 | 4.47% | 8.93% | 13.40% | 0.164 | 0.181 | | U ₃ O ₈ , ppm | 82 | 15 | 52 | 112 | 37 | 127 | 18.43% | 36.86% | 55.29% | 78 | 86 | | Zn, ppm | 49.0 | 5.4 | 38.2 | 59.7 | 32.9 | 65.1 | 10.97% | 21.93% | 32.90% | 46.5 | 51.4 | | Zr, ppm | 101 | 17 | 66 | 135 | 49 | 152 | 16.99% | 33.98% | 50.97% | 96 | 106 | | Borate / Peroxide Fu | usion ICP | | | | | | | | | | | | U, ppm | 78 | 2.7 | 73 | 83 | 70 | 86 | 3.43% | 6.85% | 10.28% | 74 | 82 | | Thermogravimetry | | | l. | l. | l. | | l | | l | l. | L | | LOI ¹⁰⁰⁰ , wt.% | 0.887 | 0.145 | 0.597 | 1.177 | 0.451 | 1.323 | 16.37% | 32.74% | 49.11% | 0.843 | 0.931 | | 4-Acid Digestion | | | ı | ı | ı | | | | | l | L | | Ag, ppm | 3.66 | 0.185 | 3.29 | 4.03 | 3.11 | 4.22 | 5.05% | 10.11% | 15.16% | 3.48 | 3.85 | | Al, wt.% | 1.61 | 0.059 | 1.49 | 1.73 | 1.43 | 1.79 | 3.69% | 7.37% | 11.06% | 1.53 | 1.69 | | As, ppm | 46.8 | 2.14 | 42.5 | 51.1 | 40.4 | 53.2 | 4.58% | 9.16% | 13.75% | 44.4 | 49.1 | | Ba, ppm | 214 | 10 | 194 | 234 | 184 | 244 | 4.65% | 9.30% | 13.95% | 203 | 225 | | Be, ppm | 0.54 | 0.042 | 0.45 | 0.62 | 0.41 | 0.66 | 7.79% | 15.58% | 23.38% | 0.51 | 0.56 | | Bi, ppm | 1.34 | 0.094 | 1.15 | 1.53 | 1.06 | 1.62 | 7.02% | 14.04% | 21.06% | 1.27 | 1.41 | | Ca, wt.% | 0.447 | 0.014 | 0.419 | 0.475 | 0.404 | 0.489 | 3.14% | 6.28% | 9.42% | 0.424 | 0.469 | | Cd, ppm | 0.19 | 0.03 | 0.12 | 0.25 | 0.09 | 0.28 | 17.12% | 34.24% | 51.37% | 0.18 | 0.20 | | Ce, ppm | 33.1 | 1.27 | 30.5 | 35.6 | 29.3 | 36.9 | 3.84% | 7.67% | 11.51% | 31.4 | 34.7 | | Co, ppm | 24.4 | 1.27 | 21.9 | 27.0 | 20.7 | 28.2 | 5.17% | 10.35% | 15.52% | 23.2 | 25.7 | | Cr, ppm | 111 | 12 | 87 | 136 | 74 | 148 | 11.02% | 22.03% | 33.05% | 106 | 117 | | Cs, ppm | 1.98 | 0.112 | 1.76 | 2.20 | 1.64 | 2.31 | 5.64% | 11.28% | 16.92% | 1.88 | 2.08 | | Cu, ppm | 137 | 4 | 129 | 145 | 125 | 149 | 3.00% | 5.99% | 8.99% | 130 | 144 | | Dy, ppm | 2.06 | 0.180 | 1.70 | 2.42 | 1.52 | 2.60 | 8.74% | 17.48% | 26.23% | 1.96 | 2.16 | | Er, ppm | 0.96 | 0.090 | 0.78 | 1.14 | 0.69 | 1.23 | 9.39% | 18.79% | 28.18% | 0.91 | 1.01 | | Eu, ppm | 0.57 | 0.032 | 0.51 | 0.64 | 0.48 | 0.67 | 5.57% | 11.14% | 16.71% | 0.55 | 0.60 | | Fe, wt.% | 2.04 | 0.089 | 1.86 | 2.22 | 1.77 | 2.31 | 4.35% | 8.70% | 13.06% | 1.94 | 2.14 | | Ga, ppm | 4.48 | 0.139 | 4.21 | 4.76 | 4.07 | 4.90 | 3.10% | 6.19% | 9.29% | 4.26 | 4.71 | | Gd, ppm | 2.48 | 0.160 | 2.16 | 2.80 | 2.00 | 2.96 | 6.44% | 12.88% | 19.32% | 2.36 | 2.61 | | Hf, ppm | 1.29 | 0.106 | 1.07 | 1.50 | 0.97 | 1.61 | 8.27% | 16.54% | 24.81% | 1.22 | 1.35 | | Ho, ppm | 0.36 | 0.04 | 0.29 | 0.43 | 0.25 | 0.47 | 10.32% | 20.64% | 30.96% | 0.34 | 0.38 | | In, ppm | 0.027 | 0.004 | 0.018 | 0.036 | 0.013 | 0.040 | 16.72% | 33.45% | 50.17% | 0.025 | 0.028 | | K, wt.% | 0.554 | 0.023 | 0.509 | 0.599 | 0.486 | 0.622 | 4.08% | 8.15% | 12.23% | 0.526 | 0.582 | | La, ppm | 16.5 | 0.68 | 15.2 | 17.9 | 14.5 | 18.6 | 4.09% | 8.19% | 12.28% | 15.7 | 17.4 | | Li, ppm | 18.2 | 1.20 | 15.8 | 20.6 | 14.6 | 21.8 | 6.61% | 13.22% | 19.83% | 17.3 | 19.1 | | Lu, ppm | 0.11 | 0.006 | 0.10 | 0.12 | 0.09 | 0.13 | 5.13% | 10.26% | 15.40% | 0.11 | 0.12 | | Mg, wt.% | 0.280 | 0.017 | 0.247 | 0.313 | 0.230 | 0.329 | 5.91% | 11.83% | 17.74% | 0.266 | 0.294 | | Mn, wt.% | 0.016 | 0.001 | 0.014 | 0.017 | 0.013 | 0.018 | 5.26% | 10.51% | 15.77% | 0.015 | 0.016 | | Mo, ppm | 5.25 | 0.324 | 4.61 | 5.90 | 4.28 | 6.23 | 6.17% | 12.34% | 18.51% | 4.99 | 5.52 | | Na, wt.% | 0.299 | 0.018 | 0.264 | 0.334 | 0.246 | 0.351 | 5.86% | 11.72% | 17.57% | 0.284 | 0.314 | | Nb, ppm | 3.66 | 0.240 | 3.18 | 4.14 | 2.94 | 4.38 | 6.57% | 13.13% | 19.70% | 3.47 | 3.84 | | Nd, ppm | 13.9 | 0.53 | 12.8 | 15.0 | 12.3 | 15.5 | 3.84% | 7.69% | 11.53% | 13.2 | 14.6 | | | | | | | l | | (= 1000 n | i . | l | L | <u> </u> | SI unit equivalents: ppm (parts per million) \equiv mg/kg \equiv μ g/g \equiv 0.0001 wt.% \equiv 1000 ppb (parts per billion). Note 1: intervals may appear asymmetric due to rounding. Note 2: the number of decimal places quoted does not imply accuracy of the certified value to this level but are given to minimise rounding errors when calculating 2SD and 3SD windows. ### Table 1 continued. | Constituent | Certified | A | Absolute \$ | Standard | Deviation | าร | Relative | Standard D | eviations | 5% w | indow | |---------------------|-----------|-------|-------------|-------------|------------|-------------|----------|------------|-----------|-------|-------| | Constituent | Value | 1SD | 2SD
Low | 2SD
High | 3SD
Low | 3SD
High | 1RSD | 2RSD | 3RSD | Low | High | | 4-Acid Digestion co | ntinued | | | | | | | | | | | | Ni, ppm | 57 | 2.9 | 52 | 63 | 49 | 66 | 5.01% | 10.03% | 15.04% | 54 | 60 | | P, wt.% | 0.016 | 0.001 | 0.014 | 0.017 | 0.014 | 0.018 | 4.72% | 9.44% | 14.16% | 0.015 | 0.017 | | Pb, ppm | 87 | 4.3 | 78 | 95 | 74 | 100 | 4.94% | 9.88% | 14.82% | 83 | 91 | | Pr, ppm | 3.68 | 0.177 | 3.33 | 4.04 | 3.15 | 4.21 | 4.80% | 9.60% | 14.40% | 3.50 | 3.87 | | Rb, ppm | 33.6 | 1.55 | 30.5 | 36.7 | 28.9 | 38.2 | 4.62% | 9.24% | 13.85% | 31.9 | 35.3 | | S, wt.% | 0.721 | 0.038 | 0.646 | 0.797 | 0.609 | 0.834 | 5.21% | 10.42% | 15.62% | 0.685 | 0.758 | | Sb, ppm | 0.86 | 0.040 | 0.78 | 0.94 | 0.74 | 0.98 | 4.61% | 9.22% | 13.83% | 0.82 | 0.90 | | Sc, ppm | 2.59 | 0.231 | 2.13 | 3.05 | 1.90 | 3.28 | 8.90% | 17.81% | 26.71% | 2.46 | 2.72 | | Sm, ppm | 2.79 | 0.137 | 2.52 | 3.07 | 2.38 | 3.20 | 4.91% | 9.82% | 14.73% | 2.65 | 2.93 | | Sn, ppm | 1.15 | 0.075 | 1.00 | 1.30 | 0.92 | 1.37 | 6.53% | 13.06% | 19.59% | 1.09 | 1.20 | | Sr, ppm | 31.6 | 1.19 | 29.2 | 34.0 | 28.0 | 35.2 | 3.76% | 7.52% | 11.28% | 30.0 | 33.2 | | Ta, ppm | 0.77 | 0.09 | 0.59 | 0.94 | 0.50 | 1.03 | 11.39% | 22.77% | 34.16% | 0.73 | 0.81 | | Tb, ppm | 0.37 | 0.025 | 0.32 | 0.42 | 0.29 | 0.44 | 6.75% | 13.50% | 20.25% | 0.35 | 0.39 | | Te, ppm | 0.14 | 0.03 | 0.09 | 0.20 | 0.06 | 0.22 | 19.28% | 38.57% | 57.85% | 0.13 | 0.15 | | Th, ppm | 11.5 | 0.49 | 10.5 | 12.5 | 10.0 | 12.9 | 4.23% | 8.47% | 12.70% | 10.9 | 12.1 | | Ti, wt.% | 0.094 | 0.005 | 0.085 | 0.103 | 0.080 | 0.108 | 4.86% | 9.72% | 14.58% | 0.089 | 0.099 | | TI, ppm | 0.21 | 0.018 | 0.18 | 0.25 | 0.16 | 0.27 | 8.26% | 16.52% | 24.79% | 0.20 | 0.22 | | Tm, ppm | 0.13 | 0.02 | 0.10 | 0.16 | 0.08 | 0.17 | 11.85% | 23.71% | 35.56% | 0.12 | 0.14 | | U, ppm | 75 | 4.1 | 67 | 84 | 63 | 88 | 5.47% | 10.94% | 16.42% | 72 | 79 | | V, ppm | 18.1 | 1.24 | 15.6 | 20.6 | 14.3 | 21.8 | 6.88% | 13.77% | 20.65% | 17.2 | 19.0 | | W, ppm | 2.93 | 0.286 | 2.36 | 3.51 | 2.07 | 3.79 | 9.76% | 19.52% | 29.28% | 2.79 | 3.08 | | Y, ppm | 8.05 | 0.492 | 7.06 | 9.03 | 6.57 | 9.52 | 6.11% | 12.22% | 18.33% | 7.64 | 8.45 | | Yb, ppm | 0.83 | 0.030 | 0.77 | 0.89 | 0.74 | 0.92 | 3.63% | 7.27% | 10.90% | 0.79 | 0.87 | | Zn, ppm | 45.2 | 2.61 | 40.0 | 50.4 | 37.4 | 53.1 | 5.78% | 11.56% | 17.34% | 43.0 | 47.5 | | Zr, ppm | 44.7 | 6.3 | 32.1 | 57.3 | 25.8 | 63.7 | 14.12% | 28.24% | 42.36% | 42.5 | 47.0 | | Infrared Combustio | n | | | | | | | | | | | | S, wt.% | 0.721 | 0.023 | 0.676 | 0.766 | 0.653 | 0.788 | 3.13% | 6.25% | 9.38% | 0.685 | 0.757 | | Gas / Liquid Pycnor | metry | | | | | | | | | | | | SG, Unity | 2.69 | 0.070 | 2.55 | 2.84 | 2.48 | 2.91 | 2.61% | 5.23% | 7.84% | 2.56 | 2.83 | SI unit equivalents: ppm (parts per million) \equiv mg/kg \equiv μ g/g \equiv 0.0001 wt.% \equiv 1000 ppb (parts per billion). Note 2: the number of decimal places quoted does not imply accuracy of the certified value to this level but are given to minimise rounding errors when calculating 2SD and 3SD windows. Note 1: intervals may appear asymmetric due to rounding. # **TABLE OF CONTENTS** | INTRODUCTION | 5 | |-----------------------------------------------------------------------------|----| | SOURCE MATERIAL | 5 | | PERFORMANCE GATES | 5 | | COMMINUTION AND HOMOGENISATION PROCEDURES | 7 | | PHYSICAL PROPERTIES | 7 | | ANALYTICAL PROGRAM | 7 | | STATISTICAL ANALYSIS | 8 | | Homogeneity Evaluation | 11 | | PARTICIPATING LABORATORIES | 13 | | PREPARER AND SUPPLIER | 16 | | METROLOGICAL TRACEABILITY | 16 | | COMMUTABILITY | 16 | | INTENDED USE | 17 | | STABILITY AND STORAGE INSTRUCTIONS | 17 | | INSTRUCTIONS FOR CORRECT USE | 17 | | HANDLING INSTRUCTIONS | 17 | | LEGAL NOTICE | 18 | | DOCUMENT HISTORY | 18 | | QMS CERTIFICATION | 18 | | CERTIFYING OFFICER | 18 | | REFERENCES | 18 | | | | | LIST OF TABLES | | | Table 1. Certified Values and Performance Gates for OREAS 298 | 1 | | Table 2. Indicative Values for OREAS 298. | 6 | | Table 3. Physical properties of OREAS 298. | 7 | | Table 4. 95% Confidence & Tolerance Limits for OREAS 298 | 9 | | Table 5. Neutron Activation Analysis of Au (in ppm) on 20 x 85mg subsamples | 12 | | LIST OF FIGURES | | Figure 1. Au by Fire Assay in OREAS 29815 ### INTRODUCTION OREAS reference materials are intended to provide a low cost method of evaluating and improving the quality of analysis of geological samples. To the geologist they provide a means of implementing quality control in analytical data sets generated in exploration from the grass roots level through to prospect evaluation, and in grade control at mining operations. To the analyst they provide an effective means of calibrating analytical equipment, assessing new techniques and routinely monitoring in-house procedures. OREAS reference materials enable users to successfully achieve process control of these tasks because the observed variance from repeated analysis has its origin almost exclusively in the analytical process rather than the reference material itself. In evaluating laboratory performance with this CRM, the section headed 'Intended Use' should be read carefully. OREAS 298 is one of a suite of seven Witwatersrand ore CRMs covering the gold range 0.07ppm to 90ppm Au. Tabulated results of all elements together with uncorrected means, medians, standard deviations, relative standard deviations and per cent deviation of lab means from the corrected mean of means (PDM³) are presented in the detailed certification data for this CRM (OREAS 298 DataPack-1.2.200205_160258.xlsx). # **SOURCE MATERIAL** OREAS 298 has been prepared from underground sample material from the Ventersdorp Contact Reef (VCR). The material was provided by AngloGold Ashanti from the Mponeng Mine which is located 80 km west of Johannesburg in the West Wits mining district. The VCR is the youngest of the Witwatersrand palaeoplacers and comprises a gold bearing quartz pebble conglomerate preserved on a terraced unconformity surface and buried by the 2.7 Ga Ventersdorp Lava. The VCR and the footwall Witwatersrand sediments were modified (cooked) post burial by lower greenschist level hydrothermal metamorphism. This overprinting event remobilised some of the gold and pyrite within the conglomerate matrix; and deposited minor authigenic pyrrhotite, chalcopyrite, sphalerite and galena. These Reef samples were taken underground for grade control purposes and assayed. The pulp reject material was then sorted into different grade bins for the purposes of CRM manufacture. Minor barren quartz, hornfels and granodiorite have been added to the pulps to achieve targeted CRM grades. ### PERFORMANCE GATES Table 1 above shows intervals calculated for two and three standard deviations. As a guide these intervals may be regarded as warning or rejection for multiple 2SD outliers, or rejection for individual 3SD outliers in QC monitoring, although their precise application should be at the discretion of the QC manager concerned (also see 'Intended Use' section below). Westgard Rules extend the basics of single-rule QC monitoring using multi-rules (for more information visit www.westgard.com/mltirule.htm). A second method utilises a 5% window calculated directly from the certified value. Standard deviation is also shown in relative percent for one, two and three relative standard deviations (1RSD, 2RSD and 3RSD) to facilitate an appreciation of the magnitude of these numbers and a comparison with the 5% window. Caution should be exercised when concentration levels approach lower limits of detection of the analytical methods employed as performance gates calculated from standard deviations tend to be excessively wide whereas those determined by the 5% method are too narrow. One approach used at commercial laboratories is to set the acceptance criteria at twice the detection level (DL) \pm 10%. i.e. Certified Value ± 10% ± 2DL (adapted from Govett, 1983). Table 2. Indicative Values for OREAS 298. | | Table 2. Indicative values for OREAS 298. | | | | | | | | |--------------------------------|-------------------------------------------|----------|---------------------------------|------|-------|--------------------------------|------|-------| | Constituent | Unit | Value | Constituent | Unit | Value | Constituent | Unit | Value | | Pb Fire Assa | ay | | | | l . | | | | | Pd | ppb | < 5 | Pt | ppb | 3.75 | | | | | Borate Fusio | on XRF | | | | | • | | | | As | ppm | 50 | La ₂ O ₃ | ppm | < 40 | Sn | ppm | 29.1 | | Bi | ppm | < 27 | Lu ₂ O ₃ | ppm | < 1 | SrO | ppm | 64 | | CeO ₂ | ppm | 110 | Мо | ppm | 69 | Та | ppm | 34.2 | | CI | ppm | 33.1 | Nb ₂ O ₅ | ppm | < 3 | Tb ₄ O ₇ | ppm | 45.0 | | Co | ppm | 22.7 | Nd_2O_3 | ppm | < 50 | Th | ppm | 51 | | Cs | ppm | < 47 | Pb | ppm | 99 | Tm ₂ O ₃ | ppm | < 2 | | Dy ₂ O ₃ | ppm | < 35 | Pr ₆ O ₁₁ | ppm | < 20 | V ₂ O ₅ | ppm | 36.0 | | Er ₂ O ₃ | ppm | 20.7 | Rb | ppm | < 18 | W | ppm | < 40 | | Eu ₂ O ₃ | ppm | < 15 | Sb | ppm | 589 | Y ₂ O ₃ | ppm | 57 | | Gd_2O_3 | ppm | < 2 | Sc | ppm | < 1 | Yb ₂ O ₃ | ppm | < 2 | | Ho ₂ O ₃ | ppm | < 2 | Sm ₂ O ₃ | ppm | < 10 | | | | | Borate / Per | oxide Fu | sion ICP | | | | | | | | Al_2O_3 | wt.% | 3.33 | Ge | ppm | < 10 | Sb | ppm | < 32 | | As | ppm | 44.8 | Hf | ppm | 3.11 | Sc | ppm | 2.17 | | В | ppm | 17.5 | Но | ppm | 0.43 | Se | ppm | < 40 | | Ва | ppm | 206 | K ₂ O | wt.% | 0.691 | SiO ₂ | wt.% | 87.64 | | Be | ppm | < 0.2 | La | ppm | 17.7 | Sm | ppm | 2.89 | | Bi | ppm | 37.7 | Li | ppm | 12.6 | Sn | ppm | 1.31 | | CaO | wt.% | 0.734 | Lu | ppm | 0.15 | Sr | ppm | 32.3 | | Cd | ppm | < 10 | MgO | wt.% | 0.485 | Та | ppm | 0.83 | | Ce | ppm | 34.2 | MnO | wt.% | 0.020 | Tb | ppm | 0.40 | | Со | ppm | 26.1 | Мо | ppm | < 8 | Th | ppm | 10.9 | | Cr | ppm | 143 | Na ₂ O | wt.% | 0.400 | TiO ₂ | wt.% | 0.176 | | Cs | ppm | 2.01 | Nb | ppm | 3.50 | Tm | ppm | 0.18 | | Cu | ppm | 120 | Nd | ppm | 14.7 | V | ppm | 19.2 | | Dy | ppm | 2.41 | Ni | ppm | 57 | W | ppm | 3.65 | | Er | ppm | 1.22 | P ₂ O ₅ | wt.% | 0.021 | Υ | ppm | 10.9 | | Eu | ppm | 0.59 | Pb | ppm | 111 | Yb | ppm | 1.09 | | Fe ₂ O ₃ | wt.% | 3.31 | Pr | ppm | 3.85 | Zr | ppm | 116 | | Ga | ppm | 5.05 | Rb | ppm | 33.9 | | | | | Gd | ppm | 2.68 | S | wt.% | 0.698 | | | | | 4-Acid Diges | stion | | | | | | | | | В | ppm | 0.19 | Hg | ppm | 0.43 | Se | ppm | 0.81 | | Ge | ppm | 0.26 | Re | ppm | 0.003 | | | | | Infrared Con | nbustion | | | | | | | | | С | wt.% | 0.069 | | | | | | | | | | | | | | | | | SI unit equivalents: ppm (parts per million) \equiv mg/kg \equiv μ g/g \equiv 0.0001 wt.% \equiv 1000 ppb (parts per billion). Note: the number of significant figures reported is not a reflection of the level of certainty of stated values. They are instead an artefact of ORE's in-house CRM-specific LIMS. # COMMINUTION AND HOMOGENISATION PROCEDURES The material constituting OREAS 298 was prepared in the following manner: - Drying to constant mass at 105°C; - Crushing and milling of ore materials to 100% minus 30 microns; - Crushing and milling of barren materials to 98% minus 75 microns; - Blending ores and barren materials in appropriate proportions to achieve the desired grade; - Packaging in 60g units sealed in laminated foil pouches and 500g units in plastic jars. # PHYSICAL PROPERTIES OREAS 298 was tested at ORE Research & Exploration Pty Ltd's onsite facility for various physical properties. Table 3 presents these findings that should be used for informational purposes only. Table 3. Physical properties of OREAS 298. | Bulk Density (g/L) | Moisture% | Munsell Notation [‡] | Munsell Color [‡] | |--------------------|-----------|-------------------------------|----------------------------| | 636 | 0.36 | N7 | Light Gray | [‡]The Munsell Rock Color Chart helps geologists and archeologists communicate with colour more effectively by cross-referencing ISCC-NBS colour names with unique Munsell alpha-numeric colour notations for rock colour samples. # ANALYTICAL PROGRAM Thirty-five commercial analytical laboratories participated in the program to certify the elements reported in Table 1. The following methods were employed: - Gold by fire assay (25-50g charge weight) with gravimetric (21 laboratories), AAS (8 laboratories) or ICP-OES (4 laboratories) finish; - Major and trace elements by borate fusion with XRF (up to 17 laboratories depending on the element); - Uranium by fusion with ICP-MS (5 laboratories); - Full ICP-OES and ICP-MS elemental suites by borate or peroxide fusion (up to 4 laboratories depending on the element); - Full ICP-OES and ICP-MS elemental suites by 4-acid (HNO₃-HF-HClO₄-HCl) digestion (up to 27 laboratories depending on the element); - Specific gravity by gas (17 laboratories) or liquid (2 laboratories) pycnometry; - Total Sulphur by infrared combustion furnace (28 laboratories). To confirm homogeneity, gold by instrumental neutron activation analysis (INAA) was undertaken on 20 x 85mg subsamples by the Australian Nuclear Science and Technology Organisation (ANSTO) located in Lucas Heights, NSW, Australia (see Table 5 in the 'Homogeneity Evaluation' section below). For the round robin program twenty 1.5kg test units were taken at predetermined intervals during the bagging stage, immediately following homogenisation and are considered representative of the entire prepared batch. Six 120g pulp samples were submitted to each laboratory for analysis. The samples received by each laboratory were obtained by taking two samples from each of three separate 1.5kg test units. This format enabled a nested ANOVA treatment of the results to evaluate homogeneity, i.e. to ascertain whether between-unit variance is greater than within-unit variance. Table 1 provides performance gate intervals for the 80 certified values based on their pooled 1SD's. Table 2 shows 99 indicative values and Table 3 provides some indicative physical properties. Table 4 presents 95% confidence and tolerance limits and gold homogeneity (via INAA) is shown in Table 5. Gold homogeneity is also demonstrated by a nested ANOVA program using the fire assay data (see 'nested ANOVA' section). Results for gold by fire assay are also presented in a scatter plot (Figure 1) together with ±3SD (magenta) and ±5% (yellow) control lines and certified value (green line). Accepted individual results are coloured blue and individual and dataset outliers are identified in red and violet, respectively. # STATISTICAL ANALYSIS **Standard Deviation** intervals (see Table 1) provide an indication of a level of performance that might reasonably be expected from a laboratory being monitored by this CRM in a QA/QC program. They take into account errors attributable to measurement uncertainty and CRM variability. For an effective CRM the contribution of the latter should be negligible in comparison to measurement errors. The Standard Deviation values include all sources of measurement uncertainty: between-lab variance, within-run variance (precision errors) and CRM variability. In the application of SD's in monitoring performance it is important to note that not all laboratories function at the same level of proficiency and that different methods in use at a particular laboratory have differing levels of precision. Each laboratory has its own inherent SD (for a specific concentration level and analyte-method pair) based on the analytical process and this SD is not directly related to the round robin program (see Intended Use section for more detail). The SD for each analyte's certified value is calculated from the same filtered data set used to determine the certified value, i.e. after removal of all individual, lab dataset (batch) and 3SD outliers (single iteration). These outliers can only be removed after the absolute homogeneity of the CRM has been independently established, i.e. the outliers must be confidently deemed to be analytical rather than arising from inhomogeneity of the CRM. The standard deviation is then calculated for each analyte from the pooled accepted analyses generated from the certification program. Certified Values, Standard Deviations, Confidence Limits and Tolerance Limits (Table 4) have been determined for each analyte following removal of individual, laboratory dataset (batch) and 3SD outliers (single iteration). For individual outliers within a laboratory batch the z-score test is used in combination with a second method that determines the per cent deviation of the individual value from the batch median. Outliers in general are selected on the basis of z-scores > 2.5 and with per cent deviations (i) > 3 and (ii) more than three times the average absolute per cent deviation for the batch. In certain instances statistician's prerogative has been employed in discriminating outliers. Each laboratory data set mean is tested for outlying status based on z-score discrimination and rejected if > 2.5. After individual and laboratory data set (batch) outliers have been eliminated a non-iterative 3 standard deviation filter is applied, with those values lying outside this window also relegated to outlying status. **Certified Values** are the means of accepted laboratory means after outlier filtering. The INAA data (see Table 5) is omitted from determination of the certified value for Au and is used solely for the calculation of Tolerance Limits and homogeneity evaluation of OREAS 298 (see 'Homogeneity Evaluation' section below). **95% Confidence Limits** are inversely proportional to the number of participating laboratories and inter-laboratory agreement. It is a measure of the reliability of the certified value. A 95% confidence interval indicates a 95% probability that the true value of the analyte under consideration lies between the upper and lower limits. **95% Confidence Limits should not be used as control limits for laboratory performance.** **Indicative (uncertified) values** (Table 2) are present where the number of laboratories reporting a particular analyte is insufficient (< 5) to support certification or where interlaboratory consensus is poor. Table 4. 95% Confidence & Tolerance Limits for OREAS 298. | Constituent | Certified | 95% Confid | ence Limits | 95% Tolera | ance Limits | |--------------------------------------------------------------|-----------|------------|-------------|------------|-------------| | Constituent | Value | Low | High | Low | High | | Pb Fire Assay | | | | | | | Au, Gold (ppm) | 34.99 | 34.74 | 35.24 | 34.86 | 35.11 | | Borate Fusion XRF | | | | | | | Al ₂ O ₃ , Aluminium(III) oxide (wt.%) | 3.10 | 3.08 | 3.12 | 3.07 | 3.13 | | BaO, Barium oxide (ppm) | 250 | 219 | 280 | 223 | 276 | | CaO, Calcium oxide (wt.%) | 0.615 | 0.611 | 0.619 | 0.605 | 0.625 | | Cr ₂ O ₃ , Chromium(III) oxide (ppm) | 199 | 193 | 205 | 179 | 219 | | Cu, Copper (ppm) | 134 | 124 | 143 | IND | IND | | Fe ₂ O ₃ , Iron(III) oxide (wt.%) | 2.93 | 2.92 | 2.94 | 2.90 | 2.96 | | K ₂ O, Potassium oxide (wt.%) | 0.673 | 0.670 | 0.677 | 0.664 | 0.683 | | MgO, Magnesium oxide (wt.%) | 0.467 | 0.458 | 0.475 | 0.455 | 0.479 | | MnO, Manganese oxide (wt.%) | 0.020 | 0.019 | 0.021 | IND | IND | | Na ₂ O, Sodium oxide (wt.%) | 0.400 | 0.391 | 0.409 | 0.391 | 0.409 | | Ni, Nickel (ppm) | 55 | 45 | 66 | IND | IND | | P ₂ O ₅ , Phosphorus(V) oxide (wt.%) | 0.037 | 0.036 | 0.039 | 0.035 | 0.039 | | S, Sulphur (wt.%) | 0.709 | 0.690 | 0.728 | 0.697 | 0.721 | | SiO ₂ , Silicon dioxide (wt.%) | 90.26 | 89.97 | 90.55 | 89.72 | 90.81 | | TiO ₂ , Titanium dioxide (wt.%) | 0.173 | 0.169 | 0.177 | IND | IND | SI unit equivalents: ppm (parts per million) \equiv mg/kg \equiv μ g/g \equiv 0.0001 wt.% \equiv 1000 ppb (parts per billion). Note: intervals may appear asymmetric due to rounding. ^{*}Gold Tolerance Limits for typical 30g fire assay are determined from 20 x 85mg INAA results and the Sampling Constant (Ingamells & Switzer, 1973). ### Table 4 continued. | Table 4 continued. Certified 95% Confidence Limits 95% Tolerance Limits | | | | | | |--------------------------------------------------------------------------|-------|-------|--------|-------|--------| | Constituent | Value | Low | High | Low | High | | Borate Fusion XRF continued | value | LOW | iligii | LOW | iligii | | U ₃ O ₈ , Uranium(V,VI) oxide (ppm) | 82 | 63 | 101 | IND | IND | | Zn, Zinc (ppm) | 49.0 | 45.9 | 52.0 | IND | IND | | , | 101 | 79 | 122 | IND | IND | | Zr, Zirconium (ppm) Borate / Peroxide Fusion ICP | 101 | 19 | 122 | טאוו | IIND | | | 70 | 75 | 0.1 | 76 | 90 | | U, Uranium (ppm) | 78 | 75 | 81 | 76 | 80 | | Thermogravimetry | 0.007 | 0.004 | 0.070 | 0.040 | 0.004 | | LOI ¹⁰⁰⁰ , Loss on ignition @1000°C (wt.%) | 0.887 | 0.804 | 0.970 | 0.840 | 0.934 | | 4-Acid Digestion | | 1 | | | | | Ag, Silver (ppm) | 3.66 | 3.59 | 3.74 | 3.56 | 3.76 | | Al, Aluminium (wt.%) | 1.61 | 1.59 | 1.64 | 1.59 | 1.64 | | As, Arsenic (ppm) | 46.8 | 45.9 | 47.7 | 45.2 | 48.3 | | Ba, Barium (ppm) | 214 | 210 | 218 | 209 | 219 | | Be, Beryllium (ppm) | 0.54 | 0.52 | 0.55 | 0.51 | 0.56 | | Bi, Bismuth (ppm) | 1.34 | 1.31 | 1.37 | 1.28 | 1.40 | | Ca, Calcium (wt.%) | 0.447 | 0.441 | 0.452 | 0.436 | 0.457 | | Cd, Cadmium (ppm) | 0.19 | 0.17 | 0.20 | 0.17 | 0.20 | | Ce, Cerium (ppm) | 33.1 | 32.6 | 33.5 | 32.1 | 34.0 | | Co, Cobalt (ppm) | 24.4 | 24.0 | 24.9 | 23.7 | 25.2 | | Cr, Chromium (ppm) | 111 | 106 | 116 | 108 | 115 | | Cs, Caesium (ppm) | 1.98 | 1.93 | 2.03 | 1.90 | 2.06 | | Cu, Copper (ppm) | 137 | 136 | 138 | 135 | 139 | | Dy, Dysprosium (ppm) | 2.06 | 1.95 | 2.17 | 1.95 | 2.17 | | Er, Erbium (ppm) | 0.96 | 0.90 | 1.01 | 0.91 | 1.01 | | Eu, Europium (ppm) | 0.57 | 0.56 | 0.59 | 0.55 | 0.60 | | Fe, Iron (wt.%) | 2.04 | 2.00 | 2.08 | 2.01 | 2.07 | | Ga, Gallium (ppm) | 4.48 | 4.44 | 4.53 | 4.30 | 4.66 | | Gd, Gadolinium (ppm) | 2.48 | 2.41 | 2.55 | 2.33 | 2.63 | | Hf, Hafnium (ppm) | 1.29 | 1.24 | 1.34 | 1.19 | 1.38 | | Ho, Holmium (ppm) | 0.36 | 0.33 | 0.39 | 0.34 | 0.38 | | In, Indium (ppm) | 0.027 | 0.025 | 0.029 | 0.024 | 0.029 | | K, Potassium (wt.%) | 0.554 | 0.545 | 0.563 | 0.542 | 0.566 | | La, Lanthanum (ppm) | 16.5 | 16.3 | 16.8 | 16.1 | 17.0 | | Li, Lithium (ppm) | 18.2 | 17.8 | 18.6 | 17.6 | 18.8 | | Lu, Lutetium (ppm) | 0.11 | 0.11 | 0.11 | IND | IND | | Mg, Magnesium (wt.%) | 0.280 | 0.273 | 0.286 | 0.273 | 0.286 | | Mn, Manganese (wt.%) | 0.016 | 0.015 | 0.016 | 0.015 | 0.016 | | Mo, Molybdenum (ppm) | 5.25 | 5.12 | 5.38 | 5.08 | 5.43 | | Nd, Neodymium (ppm) | 13.9 | 13.6 | 14.1 | 13.4 | 14.4 | | Stunit aguivalente: ppm (parte per milli | | | | | 1-77 | SI unit equivalents: ppm (parts per million) \equiv mg/kg \equiv μ g/g \equiv 0.0001 wt.% \equiv 1000 ppb (parts per billion). Note: intervals may appear asymmetric due to rounding. Table 4 continued. | | Certified | 95% Confid | dence Limits | 95% Toler | ance Limits | |------------------------------|-----------|------------|--------------|-----------|-------------| | Constituent | Value | Low | High | Low | High | | 4-Acid Digestion continued | | | | | | | Ni, Nickel (ppm) | 57 | 56 | 58 | 56 | 58 | | P, Phosphorus (wt.%) | 0.016 | 0.015 | 0.016 | 0.015 | 0.016 | | Pb, Lead (ppm) | 87 | 85 | 89 | 85 | 89 | | Pr, Praseodymium (ppm) | 3.68 | 3.56 | 3.80 | 3.53 | 3.83 | | Rb, Rubidium (ppm) | 33.6 | 33.0 | 34.2 | 32.7 | 34.5 | | S, Sulphur (wt.%) | 0.721 | 0.703 | 0.740 | 0.706 | 0.737 | | Sb, Antimony (ppm) | 0.86 | 0.84 | 0.87 | 0.82 | 0.90 | | Sc, Scandium (ppm) | 2.59 | 2.47 | 2.71 | 2.49 | 2.70 | | Sm, Samarium (ppm) | 2.79 | 2.74 | 2.85 | 2.62 | 2.96 | | Sn, Tin (ppm) | 1.15 | 1.11 | 1.18 | 1.07 | 1.22 | | Sr, Strontium (ppm) | 31.6 | 31.0 | 32.2 | 30.9 | 32.3 | | Ta, Tantalum (ppm) | 0.77 | 0.72 | 0.81 | 0.72 | 0.81 | | Tb, Terbium (ppm) | 0.37 | 0.35 | 0.39 | 0.35 | 0.39 | | Te, Tellurium (ppm) | 0.14 | 0.12 | 0.16 | IND | IND | | Th, Thorium (ppm) | 11.5 | 11.3 | 11.7 | 11.2 | 11.8 | | Ti, Titanium (wt.%) | 0.094 | 0.092 | 0.096 | 0.092 | 0.096 | | TI, Thallium (ppm) | 0.21 | 0.21 | 0.22 | 0.20 | 0.23 | | Tm, Thulium (ppm) | 0.13 | 0.11 | 0.14 | IND | IND | | U, Uranium (ppm) | 75 | 74 | 77 | 73 | 77 | | V, Vanadium (ppm) | 18.1 | 17.5 | 18.6 | 17.5 | 18.7 | | W, Tungsten (ppm) | 2.93 | 2.84 | 3.03 | 2.70 | 3.17 | | Y, Yttrium (ppm) | 8.05 | 7.84 | 8.25 | 7.81 | 8.28 | | Yb, Ytterbium (ppm) | 0.83 | 0.81 | 0.86 | 0.80 | 0.87 | | Zn, Zinc (ppm) | 45.2 | 44.2 | 46.2 | 43.7 | 46.8 | | Zr, Zirconium (ppm) | 44.7 | 41.9 | 47.5 | 43.0 | 46.5 | | Infrared Combustion | | | | | | | S, Sulphur (wt.%) | 0.721 | 0.713 | 0.728 | 0.707 | 0.735 | | Gas / Liquid Pycnometry | | | | | | | SG, Specific Gravity (Unity) | 2.69 | 2.66 | 2.73 | 2.66 | 2.73 | SI unit equivalents: ppm (parts per million) \equiv mg/kg \equiv μ g/g \equiv 0.0001 wt.% \equiv 1000 ppb (parts per billion). Note: intervals may appear asymmetric due to rounding. # **Homogeneity Evaluation** For analytes other than gold the tolerance limits (ISO 16269:2014) shown in Table 4 were determined using an analysis of precision errors method and are considered a conservative estimate of true homogeneity. The meaning of tolerance limits may be illustrated for zinc by 4-acid digestion, where 99% of the time (1- α =0.99) at least 95% of subsamples (ρ =0.95) will have concentrations lying between 43.7 and 46.8 ppm. Put more precisely, this means that if the same number of subsamples were taken and analysed in the same manner repeatedly, 99% of the tolerance intervals so constructed would cover at least 95% of the total population, and 1% of the tolerance intervals would cover less than 95% of the total population (ISO Guide 35). **Please note that tolerance limits pertain to** the homogeneity of the CRM only and should not be used as control limits for laboratory performance. Table 5. Neutron Activation Analysis of Au (in ppm) on 20 x 85mg subsamples and showing the equivalent results scaled to a 30g sample mass typical of fire assay determination. | Replicate | Au | Au | |--------------|-------------|-----------------| | No | 85mg actual | 30g equivalent* | | 1 | 35.64 | 36.39 | | 2 | 36.46 | 36.44 | | 3 | 36.19 | 36.42 | | 4 | 35.86 | 36.41 | | 5 | 35.61 | 36.39 | | 6 | 34.65 | 36.34 | | 7 | 36.46 | 36.44 | | 8 | 36.27 | 36.43 | | 9 | 37.37 | 36.49 | | 10 | 37.26 | 36.48 | | 11 | 37.30 | 36.48 | | 12 | 37.15 | 36.47 | | 13 | 37.54 | 36.49 | | 14 | 36.92 | 36.46 | | 15 | 35.90 | 36.41 | | 16 | 36.73 | 36.45 | | 17 | 36.96 | 36.46 | | 18 | 35.31 | 36.38 | | 19 | 36.26 | 36.43 | | 20 | 36.87 | 36.46 | | Mean | 36.44 | 36.44 | | Median | 36.46 | 36.44 | | Std Dev. | 0.77 | 0.04 | | Rel.Std.Dev. | 2.12% | 0.11% | *Results calculated for a 30g equivalent sample mass using the formula: $x^{30g Eq} = \frac{(x^{INAA} - \bar{X}) \times RSD@30g}{RSD@85mg} + \bar{X}$ where $x^{30g Eq} =$ equivalent result calculated for a 30g sample mass (x^{INAA}) = raw INAA result at 85mg \bar{X} = mean of 85mg INAA results Table 5 above shows the gold INAA data determined on 20 x 85mg subsamples of OREAS 298. An equivalent scaled version of the results is also provided to demonstrate the level of repeatability that would be achieved if 30g fire assay determinations were undertaken without the normal measurement error associated with this methodology. The homogeneity of gold has been determined by INAA using the reduced analytical subsample method which utilises the known relationship between standard deviation and analytical subsample weight (Ingamells and Switzer, 1973). In this approach the sample aliquot is substantially reduced to a point where most of the variability in replicate assays should be due to inhomogeneity of the reference material (i.e. sampling error) and measurement error becomes negligible. In this instance a subsample weight of 85 milligrams was employed and the 1RSD of 0.11% was calculated for a 30g fire assay sample (2.12% at 85mg weights) and confirms the high level of gold homogeneity in OREAS 298. The homogeneity of OREAS 298 has also been evaluated in a **nested ANOVA** of the round robin program. Each of the thirty-four round robin laboratories received six samples per CRM and these samples were made up of paired samples from three different, non-adjacent sampling intervals. The purpose of the ANOVA evaluation is to test that no statistically significant difference exists in the variance between units to that of the variance within units. This allows an assessment of homogeneity across the entire prepared batch of OREAS 298. The test was performed using the following parameters: - Gold fire assay 198 samples (33 laboratories each providing analyses on 3 pairs of samples); - Null Hypothesis, H₀: Between-unit variance is no greater than within-unit variance (reject H₀ if *p*-value < 0.05); - Alternative Hypothesis, H₁: Between-unit variance is greater than within-unit variance. P-values are a measure of probability where values less than 0.05 indicate a greater than 95% probability that the observed differences in within-unit and between-unit variances are real. The datasets were filtered for both individual and laboratory data set (batch) outliers prior to the calculation of the p-value. This process derived a p-value of 0.99 for Au by fire assay which is an insignificant result and the Null Hypothesis is therefore retained. Additionally, none of the other certified values showed significant p-values. Please note that only results for constituents present in concentrations well above the detection levels (i.e. >20 x Lower Limit of Detection) for the various methods undertaken were considered for the objective of evaluating homogeneity. It is important to note that ANOVA is not an absolute measure of homogeneity. Rather, it establishes whether or not the analytes are distributed in a similar manner throughout the packaging run of OREAS 298 and whether the variance between two subsamples from the same unit is statistically distinguishable from the variance of two subsamples taken from any two separate units. A reference material therefore can possess poor absolute homogeneity yet still pass a relative homogeneity (ANOVA) test if the within-unit heterogeneity is large and similar across all units. Based on the statistical analysis of the results of the inter-laboratory certification program it can be concluded that OREAS 298 is fit-for-purpose as a certified reference material (see 'Intended Use' below). # **PARTICIPATING LABORATORIES** - 1. Actlabs, Ancaster, Ontario, Canada - 2. AGAT Laboratories, Mississauga, Ontario, Canada - 3. Alex Stewart International, Mendoza, Argentina - 4. ALS, Brisbane, QLD, Australia - 5. ALS, Lima, Peru - 6. ALS, Loughrea, Galway, Ireland - 7. ALS, Perth, WA, Australia - 8. ALS, Vancouver, BC, Canada - 9. American Assay Laboratories, Sparks, Nevada, USA - 10. ANSTO, Lucas Heights, NSW, Australia - 11. ARGETEST Mineral Processing, Ankara, Central Anatolia, Turkey - 12. Bureau Veritas, Abidjan, Côte d'Ivoire - Bureau Veritas Commodities Canada Ltd, Vancouver, BC, Canada 13. - 14. Bureau Veritas Geoanalytical, Perth, WA, Australia - 15. Inspectorate (BV), Lima, Peru - Inspectorate America Corporation (BV), Sparks, Nevada, USA 16. - 17. Intertek Genalysis, Adelaide, SA, Australia - 18. Intertek Genalysis, Perth, WA, Australia - 19. Intertek Tarkwa, Tarkwa, Ghana - Intertek Testing Services Philippines, Cupang, Muntinlupa, Philippines 20. - 21. MinAnalytical Services, Perth, WA, Australia - 22. Nagrom, Perth, WA, Australia - 23. Ontario Geological Survey, Sudbury, Ontario, Canada - 24. PT Geoservices Ltd, Cikarang, Jakarta Raya, Indonesia - 25. PT Intertek Utama Services, Jakarta Timur, DKI Jakarta, Indonesia - Quality Laboratory Services, Dar es Salaam, Chunya, United Republic of Tanzania 26. - 27. Reminex Centre de Recherche, Marrakesh, Marrakesh-Safi, Morocco - 28. Saskatchewan Research Council, Saskatoon, Saskatchewan, Canada - SGS, Randfontein, Gauteng, South Africa 29. - 30. SGS Canada Inc., Vancouver, BC, Canada - 31. SGS del Peru, Lima, Peru - 32. SGS Lakefield Research Ltd, Lakefield, Ontario, Canada - 33. SGS Tarkwa, Tarkwa, Western Region, Ghana - Skyline Assayers & Laboratories, Tucson, Arizona, USA 34. - 35. UIS Analytical Services, Centurion, South Africa Please note: To preserve anonymity, the above numbered alphabetical list of participating laboratories does not correspond with the Lab ID numbering on the scatter plot below. COA-1452-OREAS298-R2 Page: 14 of 18 # PREPARER AND SUPPLIER Certified reference material OREAS 298 was prepared, certified and supplied by: ORE Research & Exploration Pty Ltd Tel: +613-9729 0333 37A Hosie Street Fax: +613-9729 8338 Bayswater North VIC 3153 Web: www.ore.com.au AUSTRALIA Email: info@ore.com.au # METROLOGICAL TRACEABILITY The analytical samples were selected in a manner representative of the entire batch of the prepared CRM. This 'representivity' was maintained in each submitted laboratory sample batch and ensures the user that the data is traceable from sample selection through to the analytical results that underlie the consensus values. Each analytical data set has been validated by its assayer through the inclusion of internal reference materials and QC checks during analysis. The laboratories were chosen on the basis of their competence (from past performance in inter-laboratory programs undertaken by ORE Pty Ltd) for a particular analytical method, analyte or analyte suite and sample matrix. Most of these laboratories have and maintain ISO 17025 accreditation. The certified values presented in this report are calculated from the means of accepted data following robust statistical treatment, as detailed in this report. Guide ISO/TR 16476:2016, section 5.3.1 describes metrological traceability in reference materials as it pertains to the transformation of the measurand. In this section it states, "Although the determination of the property value itself can be made traceable to appropriate units through, for example, calibration of the measurement equipment used, steps like the transformation of the sample from one physical (chemical) state to another cannot. Such transformations may only be compared with a reference (when available), or among themselves. For some transformations, reference methods have been defined and may be used in certification projects to evaluate the uncertainty associated with such a transformation. In other cases, only a comparison among different laboratories using the same method is possible. In this case, certification takes place on the basis of agreement among independent measurement results (see ISO Guide 35:2006, Clause 10)." ### COMMUTABILITY The measurements of the results that underlie the certified values contained in this report were undertaken by methods involving pre-treatment (digestion/fusion) of the sample. This served to reduce the sample to a simple and well understood form permitting calibration using simple solutions of the CRM. Due to these methods being well understood and highly effective, commutability is not an issue for this CRM. All OREAS CRMs are sourced from natural ore minerals meaning they will display similar behaviour as routine 'field' samples in the relevant measurement process. Care should be taken to ensure 'matrix matching' as close as practically achievable. The matrix and mineralisation style of the CRM is described in the 'Source Material' section and users should select appropriate CRMs matching these attributes to their field samples. # **INTENDED USE** OREAS 298 is intended to cover all activities needed to produce a measurement result. This includes extraction, possible separation steps and the actual measurement process (the signal producing step). OREAS 298 may be used to calibrate the entire procedure by producing a pure substance CRM transformed into a calibration solution. OREAS 298 is intended for the following uses: - For the monitoring of laboratory performance in the analysis of analytes reported in Table 1 in geological samples; - For the verification of analytical methods for analytes reported in Table 1; - For the calibration of instruments used in the determination of the concentration of analytes reported in Table 1. # QC monitoring using multiples of the Standard Deviation (SD) In the application of SD's in monitoring performance it is important to note that not all laboratories function at the same level of proficiency and that different methods in use at a particular laboratory have differing levels of precision. Each laboratory has its own inherent SD (for a specific concentration level and analyte-method pair) based on the analytical process and this SD is not directly related to the round robin program. The majority of data generated in the round robin program was produced by a selection of world class laboratories. The SD's thus generated are more constrained than those that would be produced across a randomly selected group of laboratories. To produce more generally achievable SD's the 'pooled' SD's provided in this report include inter-laboratory bias. This 'one size fits all' approach may require revision at the discretion of the QC manager concerned following careful scrutiny of QC control charts. # STABILITY AND STORAGE INSTRUCTIONS OREAS 298 has been prepared from primary gold ore blended with barren quartz and granodiorite. It is low in reactive sulphide (0.72 wt.% S) and in its unopened state and under normal conditions of storage has a shelf life beyond ten years. Its stability will be monitored at regular intervals and purchasers notified if any changes are observed. # INSTRUCTIONS FOR CORRECT USE The certified values by lithium borate fusion XRF and for LOI at 1000° C are on a dry sample basis while the certified values by other methods (fire assay, infrared combustion furnace, fusion ICP, 4-acid digestion and pycnometry) are reported on a 'sample as received' basis. # HANDLING INSTRUCTIONS Fine powders pose a risk to eyes and lungs and therefore standard precautions including the use of safety glasses and dust masks are advised. # **LEGAL NOTICE** Ore Research & Exploration Pty Ltd has prepared and statistically evaluated the property values of this reference material to the best of its ability. The Purchaser by receipt hereof releases and indemnifies Ore Research & Exploration Pty Ltd from and against all liability and costs arising from the use of this material and information. # **DOCUMENT HISTORY** | Revision No. | Date | Changes applied | |--------------|---------------------------------|-------------------------------------------------------------------| | 2 | 24 th February, 2020 | Edited description of gold fire assay analytical program section. | | 1 | 5 th February, 2020 | Minor edits to the 'Source Material' section. | | 0 | 3 rd February, 2020 | First publication. | # **QMS CERTIFICATION** ORE Pty Ltd is ISO 9001:2015 certified by Lloyd's Register Quality Assurance Ltd for its quality management system including development, manufacturing, certification and supply of CRMs. # **CERTIFYING OFFICER** 8/2 24th February, 2020 Craig Hamlyn (B.Sc. Hons - Geology), Technical Manager - ORE P/L # REFERENCES Govett, G.J.S. (1983). Handbook of Exploration Geochemistry, Volume 2: Statistics and Data Analysis in Geochemical Prospecting (Variations of accuracy and precision). Ingamells, C. O. and Switzer, P. (1973). Talanta 20, 547-568. ISO Guide 30:2015. Terms and definitions used in connection with reference materials. ISO Guide 31:2015. Reference materials – Contents of certificates and labels. ISO Guide 35:2017. Certification of reference materials - General and statistical principals. ISO 16269:2014. Statistical interpretation of data – Part 6: Determination of statistical tolerance intervals. ISO/TR 16476:2016, Reference Materials – Establishing and expressing metrological traceability of quantity values assigned to reference materials. Munsell Rock Color Book (2014). Rock-Color Chart Committee, Geological Society of America (GSA), 4300 44th Street SE, Grand Rapids, MI 49512.