CERTIFICATE OF ANALYSIS FOR # OREAS 145 Sn Ore (Renison Bell Tin Mine, Tasmania, Australia) Table 1. Certified Values, Uncertainty & Tolerance Intervals in OREAS 145. | 0 111 | Certified | 95% Expande | ed Uncertainty | 95% Tolerance Limits | | | |--|-----------|-------------|----------------|----------------------|-------|--| | Constituent | Value† | Low | High | Low | High | | | Borate Fusion XRF | | | | | • | | | Al ₂ O ₃ , Aluminium(III) oxide (wt.%) | 10.11 | 9.98 | 10.24 | 9.99 | 10.23 | | | As, Arsenic (wt.%) | 0.441 | 0.419 | 0.464 | 0.429 | 0.454 | | | BaO, Barium oxide (ppm) | 426 | 363 | 488 | 397 | 455 | | | CaO, Calcium oxide (wt.%) | 10.40 | 10.25 | 10.56 | 10.29 | 10.52 | | | Co, Cobalt (ppm) | < 100 | IND | IND | IND | IND | | | Cu, Copper (wt.%) | 0.129 | 0.122 | 0.136 | 0.122 | 0.136 | | | Fe ₂ O ₃ , Iron(III) oxide (wt.%) | 13.64 | 13.40 | 13.89 | 13.49 | 13.80 | | | HfO ₂ , Hafnium dioxide (ppm) | < 100 | IND | IND | IND | IND | | | K ₂ O, Potassium oxide (wt.%) | 1.83 | 1.80 | 1.85 | 1.80 | 1.85 | | | MgO, Magnesium oxide (wt.%) | 2.32 | 2.26 | 2.37 | 2.28 | 2.35 | | | MnO, Manganese oxide (wt.%) | 0.087 | 0.084 | 0.090 | 0.085 | 0.089 | | | Mo, Molybdenum (ppm) | < 50 | IND | IND | IND | IND | | | Na ₂ O, Sodium oxide (wt.%) | 0.881 | 0.760 | 1.002 | 0.854 | 0.908 | | | P ₂ O ₅ , Phosphorus(V) oxide (wt.%) | 0.106 | 0.098 | 0.115 | 0.102 | 0.110 | | | SiO ₂ , Silicon dioxide (wt.%) | 46.18 | 45.56 | 46.81 | 45.77 | 46.59 | | | Sn, Tin (wt.%) | 1.05 | 1.03 | 1.07 | 1.04 | 1.06 | | | SO ₃ , Sulphur trioxide (wt.%) | 11.47 | 11.27 | 11.67 | 11.32 | 11.62 | | | SrO, Strontium oxide (ppm) | 124 | 99 | 149 | IND | IND | | | TiO ₂ , Titanium dioxide (wt.%) | 0.464 | 0.446 | 0.482 | 0.452 | 0.476 | | | V ₂ O ₅ , Vanadium(V) oxide (ppm) | 113 | 69 | 157 | IND | IND | | | Zn, Zinc (ppm) | 76 | 56 | 96 | IND | IND | | | Borate / Peroxide Fusion ICP | | | | | | | | Al, Aluminium (wt.%) | 5.35 | 5.16 | 5.53 | 5.26 | 5.44 | | | As, Arsenic (wt.%) | 0.438 | 0.420 | 0.457 | 0.432 | 0.445 | | | Ba, Barium (ppm) | 389 | 370 | 407 | 380 | 398 | | | Be, Beryllium (ppm) | 4.45 | 2.82 | 6.08 | IND | IND | | | Ca, Calcium (wt.%) | 7.55 | 7.14 | 7.96 | 7.38 | 7.72 | | | Ce, Cerium (ppm) | 51 | 46 | 56 | 48 | 54 | | | Co, Cobalt (ppm) | 17.5 | 15.8 | 19.2 | 16.8 | 18.2 | | | Cr, Chromium (ppm) | 64 | 48 | 79 | IND | IND | | | Cs, Caesium (ppm) | 6.29 | 5.36 | 7.22 | 5.88 | 6.70 | | | Cu, Copper (wt.%) | 0.133 | 0.129 | 0.138 | 0.130 | 0.137 | | | Dy, Dysprosium (ppm) | 4.29 | 3.73 | 4.85 | 3.91 | 4.67 | | | Er, Erbium (ppm) | 2.49 | 1.97 | 3.00 | 2.30 | 2.67 | | SI unit equivalents: ppm (parts per million; 1×10^{-6}) \equiv mg/kg; wt.% (weight per cent) \equiv % (mass fraction). Note: intervals may appear asymmetric due to rounding. IND = indeterminate (due to limited reading resolution of the methods employed. For practical purposes the 95% Expanded Uncertainty can be set between zero and a two times multiple of the upper bound/non-detect limit value). COA-1939-OREAS 145-R0 Page: 2 of 25 [†]These operationally defined measurands comply with the requirements of ISO 17034. Metrological traceability has been established either through the exclusive use of laboratories accredited to ISO/IEC 17025:2017, or through validated performance against existing Certified Reference Materials (CRMs). Table 1 continued. | Constituent Value* Low High Low High Borate / Peroxide Fusion ICP continued | | | | |---|----------------------|--|--| | Borate / Peroxide Fusion ICP continued | 95% Tolerance Limits | | | | Eu, Europium (ppm) 0.91 0.77 1.05 IND III Fe, Iron (wt.%) 9.48 9.18 9.79 9.33 9 Ga, Gallium (ppm) 19.7 18.2 21.2 19.0 2 Gd, Gadolinium (ppm) 4.35 3.47 5.24 4.03 4 Ho, Holmium (ppm) 0.86 0.67 1.05 IND III K, Potassium (wt.%) 1.55 1.47 1.63 1.52 1 La, Lanthanum (ppm) 24.9 22.2 27.5 23.4 2 Li, Lithium (ppm) 87 77 96 84 3 Mg, Magnesium (wt.%) 1.37 1.33 1.41 1.35 1 Mn, Manganese (wt.%) 0.069 0.067 0.071 0.068 0. Nd, Nickel (ppm) 23.7 22.0 25.5 22.9 2 Ni, Nickel (ppm) 24.9 19.1 30.7 IND II Pr, Praseodymium (ppm) 6.32 5.75 <t< td=""><td>igh</td></t<> | igh | | | | Fe, Iron (wt.%) 9.48 9.18 9.79 9.33 9 Ga, Gallium (ppm) 19.7 18.2 21.2 19.0 2 Gd, Gadolinium (ppm) 4.35 3.47 5.24 4.03 4 Ho, Holmium (ppm) 0.86 0.67 1.05 IND III K, Potassium (wt.%) 1.55 1.47 1.63 1.52 1 La, Lanthanum (ppm) 24.9 22.2 27.5 23.4 2 Li, Lithium (ppm) 87 77 96 84 3 Mg, Magnesium (wt.%) 1.37 1.33 1.41 1.35 1 Mn, Manganese (wt.%) 0.069 0.067 0.071 0.068 0 Nd, Neodymium (ppm) 23.7 22.0 25.5 22.9 2 Ni, Nickel (ppm) 24.9 19.1 30.7 IND III P, Phosphorus (wt.%) 0.047 0.041 0.054 IND II Pr, Praseodymium (ppm) 6.32 5.75 | | | | | Ga, Gallium (ppm) 19.7 18.2 21.2 19.0 2 Gd, Gadolinium (ppm) 4.35 3.47 5.24 4.03 4 Ho, Holmium (ppm) 0.86 0.67 1.05 IND II K, Potassium (wt.%) 1.55 1.47 1.63 1.52 1 La, Lanthanum (ppm) 24.9 22.2 27.5 23.4 2 Li, Lithium (ppm) 87 77 96 84 3 Mg, Magnesium (wt.%) 1.37 1.33 1.41 1.35 1 Mn, Manganese (wt.%) 0.069 0.067 0.071 0.068 0 Nd, Neodymium (ppm) 23.7 22.0 25.5 22.9 2 Ni, Nickel (ppm) 24.9 19.1 30.7 IND II P, Phosphorus (wt.%) 0.047 0.041 0.054 IND II Pr, Praseodymium (ppm) 6.32 5.75 6.89 6.00 6 Rb, Rubidium (ppm) 119 110 | ID | | | | Gd, Gadolinium (ppm) 4.35 3.47 5.24 4.03 4 Ho, Holmium (ppm) 0.86 0.67 1.05 IND II K, Potassium (wt.%) 1.55 1.47 1.63 1.52 1 La, Lanthanum (ppm) 24.9 22.2 27.5 23.4 2 Li, Lithium (ppm) 87 77 96 84 8 Mg, Magnesium (wt.%) 1.37 1.33 1.41 1.35 1 Mn, Manganese (wt.%) 0.069 0.067 0.071 0.068 0 Nd, Neodymium (ppm) 23.7 22.0 25.5 22.9 2 Ni, Nickel (ppm) 24.9 19.1 30.7 IND II P, Phosphorus (wt.%) 0.047 0.041 0.054 IND II P, Paseodymium (ppm) 6.32 5.75 6.89 6.00 6 Rb, Rubidium (ppm) 119 110 128 113 1 S, Silphur (wt.%) 2.196 20.89 | 64 | | | | Ho, Holmium (ppm) 0.86 0.67 1.05 IND III K, Potassium (wt.%) 1.55 1.47 1.63 1.52 1 La, Lanthanum (ppm) 24.9 22.2 27.5 23.4 2 Li, Lithium (ppm) 87 77 96 84 3 Mg, Magnesium (wt.%) 1.37 1.33 1.41 1.35 1 Mn, Manganese (wt.%) 0.069 0.067 0.071 0.068 0 Nd, Neodymium (ppm) 23.7 22.0 25.5 22.9 2 Ni, Nickel (ppm) 24.9 19.1 30.7 IND II P, Phosphorus (wt.%) 0.047 0.041 0.054 IND II Pr, Praseodymium (ppm) 6.32 5.75 6.89 6.00 6 Rb, Rubidium (ppm) 119 110 128 113 1 S, Sulphur (wt.%) 4.45 4.34 4.57 4.40 4 Si, Silicon (wt.%) 21.96 20.89 | 0.4 | | | | K, Potassium (wt.%) 1.55 1.47 1.63 1.52 1 La, Lanthanum (ppm) 24.9 22.2 27.5 23.4 2 Li, Lithium (ppm) 87 77 96 84 8 Mg, Magnesium (wt.%) 1.37 1.33 1.41 1.35 1 Mn, Manganese (wt.%) 0.069 0.067 0.071 0.068 0 Nd, Neodymium (ppm) 23.7 22.0 25.5 22.9 2 Ni, Nickel (ppm) 24.9 19.1 30.7 IND II P, Phosphorus (wt.%) 0.047 0.041 0.054 IND II Pr, Praseodymium (ppm) 6.32 5.75 6.89 6.00 6 Rb, Rubidium (ppm) 119 110 128 113 1 S, Sulphur (wt.%) 4.45 4.34 4.57 4.40 4 Si, Silicon (wt.%) 21.96 20.89 23.03 21.12 22 Sm, Samarium (ppm) 4.77 3.85 | 67 | | | | La, Lanthanum (ppm) 24.9 22.2 27.5 23.4 2 Li, Lithium (ppm) 87 77 96 84 6 Mg, Magnesium (wt.%) 1.37 1.33 1.41 1.35 1 Mn, Manganese (wt.%) 0.069 0.067 0.071 0.068 0 Nd, Neodymium (ppm) 23.7 22.0 25.5 22.9 2 Ni, Nickel (ppm) 24.9 19.1 30.7 IND II P, Phosphorus (wt.%) 0.047 0.041 0.054 IND II Pr, Praseodymium (ppm) 6.32 5.75 6.89 6.00 6 Rb, Rubidium (ppm) 119 110 128 113 1 S, Sulphur (wt.%) 4.45 4.34 4.57 4.40 4 Si, Silicon (wt.%) 21.96 20.89 23.03 21.12 22 Sm, Samarium (ppm) 4.77 3.85 5.69 4.39 5 Sn, Tin (wt.%) 1.01 0.97 | 1D | | | | Li, Lithium (ppm) 87 77 96 84 8 Mg, Magnesium (wt.%) 1.37 1.33 1.41 1.35 1 Mn, Manganese (wt.%) 0.069 0.067 0.071 0.068 0 Nd, Neodymium (ppm) 23.7 22.0 25.5 22.9 2 Ni, Nickel (ppm) 24.9 19.1 30.7 IND III P, Phosphorus (wt.%) 0.047 0.041 0.054 IND II Pr, Praseodymium (ppm) 6.32 5.75 6.89 6.00 6 Rb, Rubidium (ppm) 119 110 128 113 1 S, Sulphur (wt.%) 4.45 4.34 4.57 4.40 4 Si, Silicon (wt.%) 21.96 20.89 23.03 21.12 22 Sm, Samarium (ppm) 4.77 3.85 5.69 4.39 5 Sn, Tin (wt.%) 1.01 0.97 1.05 1.00 1 Ts, Strontium (ppm) 0.94 0.71 | 59 | | | | Mg, Magnesium (wt.%) 1.37 1.33 1.41 1.35 1 Mn, Manganese (wt.%) 0.069 0.067 0.071 0.068 0 Nd, Neodymium (ppm) 23.7 22.0 25.5 22.9 2 Ni, Nickel (ppm) 24.9 19.1 30.7 IND II P, Phosphorus (wt.%) 0.047 0.041 0.054 IND II Pr, Praseodymium (ppm) 6.32 5.75 6.89 6.00 6 Rb, Rubidium (ppm) 119 110 128 113 1 S, Sulphur (wt.%) 4.45 4.34 4.57 4.40 4 Si, Silicon (wt.%) 21.96 20.89 23.03 21.12 22 Sm, Samarium (ppm) 4.77 3.85 5.69 4.39 5 Sn, Tin (wt.%) 1.01 0.97 1.05 1.00 1 Sr, Strontium (ppm) 112 105 119 108 1 Ta, Tantalum (ppm) 0.68 0.51 | 3.3 | | | | Mn, Manganese (wt.%) 0.069 0.067 0.071 0.068 0. Nd, Neodymium (ppm) 23.7 22.0 25.5 22.9 2 Ni, Nickel (ppm) 24.9 19.1 30.7 IND II P, Phosphorus (wt.%) 0.047 0.041 0.054 IND II Pr, Praseodymium (ppm) 6.32 5.75 6.89 6.00 6 Rb, Rubidium (ppm) 119 110 128 113 1 S, Sulphur (wt.%) 4.45 4.34 4.57 4.40 4 Si,
Silicon (wt.%) 21.96 20.89 23.03 21.12 22 Sm, Samarium (ppm) 4.77 3.85 5.69 4.39 5 Sn, Tin (wt.%) 1.01 0.97 1.05 1.00 1 Sr, Strontium (ppm) 112 105 119 108 1 Ta, Tantalum (ppm) 0.68 0.51 0.84 IND II Th, Thorium (ppm) 9.89 8.84 | 39 | | | | Nd, Neodymium (ppm) 23.7 22.0 25.5 22.9 2 Ni, Nickel (ppm) 24.9 19.1 30.7 IND II P, Phosphorus (wt.%) 0.047 0.041 0.054 IND II Pr, Praseodymium (ppm) 6.32 5.75 6.89 6.00 6 Rb, Rubidium (ppm) 119 110 128 113 1 S, Sulphur (wt.%) 4.45 4.34 4.57 4.40 4 Si, Silicon (wt.%) 21.96 20.89 23.03 21.12 22 Sm, Samarium (ppm) 4.77 3.85 5.69 4.39 5 Sn, Tin (wt.%) 1.01 0.97 1.05 1.00 1 Sr, Strontium (ppm) 112 105 119 108 1 Ta, Tantalum (ppm) 0.68 0.51 0.84 IND II Th, Thorium (ppm) 9.89 8.84 10.94 9.56 10 Ti, Titanium (wt.%) 0.277 0.264 | 40 | | | | Ni, Nickel (ppm) 24.9 19.1 30.7 IND II P, Phosphorus (wt.%) 0.047 0.041 0.054 IND II Pr, Praseodymium (ppm) 6.32 5.75 6.89 6.00 6 Rb, Rubidium (ppm) 119 110 128 113 1 S, Sulphur (wt.%) 4.45 4.34 4.57 4.40 4 Si, Silicon (wt.%) 21.96 20.89 23.03 21.12 22 Sm, Samarium (ppm) 4.77 3.85 5.69 4.39 5 Sn, Tin (wt.%) 1.01 0.97 1.05 1.00 1 Sr, Strontium (ppm) 112 105 119 108 1 Ta, Tantalum (ppm) 0.94 0.71 1.16 IND II Tb, Terbium (ppm) 0.68 0.51 0.84 IND II Th, Thorium (ppm) 9.89 8.84 10.94 9.56 10 Ti, Titanium (wt.%) 0.277 0.264 | 071 | | | | P, Phosphorus (wt.%) 0.047 0.041 0.054 IND II Pr, Praseodymium (ppm) 6.32 5.75 6.89 6.00 6 Rb, Rubidium (ppm) 119 110 128 113 1 S, Sulphur (wt.%) 4.45 4.34 4.57 4.40 4 Si, Silicon (wt.%) 21.96 20.89 23.03 21.12 22 Sm, Samarium (ppm) 4.77 3.85 5.69 4.39 5 Sn, Tin (wt.%) 1.01 0.97 1.05 1.00 1 Sr, Strontium (ppm) 112 105 119 108 1 Ta, Tantalum (ppm) 0.94 0.71 1.16 IND II Tb, Terbium (ppm) 0.68 0.51 0.84 IND II Th, Thorium (ppm) 9.89 8.84 10.94 9.56 10 Ti, Titanium (wt.%) 0.277 0.264 0.290 0.267 0. | 1.6 | | | | Pr, Praseodymium (ppm) 6.32 5.75 6.89 6.00 6 Rb, Rubidium (ppm) 119 110 128 113 1 S, Sulphur (wt.%) 4.45 4.34 4.57 4.40 4 Si, Silicon (wt.%) 21.96 20.89 23.03 21.12 22 Sm, Samarium (ppm) 4.77 3.85 5.69 4.39 5 Sn, Tin (wt.%) 1.01 0.97 1.05 1.00 1 Sr, Strontium (ppm) 112 105 119 108 1 Ta, Tantalum (ppm) 0.94 0.71 1.16 IND II Tb, Terbium (ppm) 0.68 0.51 0.84 IND II Th, Thorium (ppm) 9.89 8.84 10.94 9.56 10 Ti, Titanium (wt.%) 0.277 0.264 0.290 0.267 0. | ND | | | | Rb, Rubidium (ppm) 119 110 128 113 1 S, Sulphur (wt.%) 4.45 4.34 4.57 4.40 4 Si, Silicon (wt.%) 21.96 20.89 23.03 21.12 22 Sm, Samarium (ppm) 4.77 3.85 5.69 4.39 5 Sn, Tin (wt.%) 1.01 0.97 1.05 1.00 1 Sr, Strontium (ppm) 112 105 119 108 1 Ta, Tantalum (ppm) 0.94 0.71 1.16 IND II Tb, Terbium (ppm) 0.68 0.51 0.84 IND II Th, Thorium (ppm) 9.89 8.84 10.94 9.56 10 Ti, Titanium (wt.%) 0.277 0.264 0.290 0.267 0. | 1D | | | | S, Sulphur (wt.%) 4.45 4.34 4.57 4.40 4 Si, Silicon (wt.%) 21.96 20.89 23.03 21.12 22 Sm, Samarium (ppm) 4.77 3.85 5.69 4.39 5 Sn, Tin (wt.%) 1.01 0.97 1.05 1.00 1 Sr, Strontium (ppm) 112 105 119 108 1 Ta, Tantalum (ppm) 0.94 0.71 1.16 IND II Tb, Terbium (ppm) 0.68 0.51 0.84 IND II Th, Thorium (ppm) 9.89 8.84 10.94 9.56 10 Ti, Titanium (wt.%) 0.277 0.264 0.290 0.267 0. | 64 | | | | Si, Silicon (wt.%) 21.96 20.89 23.03 21.12 22 Sm, Samarium (ppm) 4.77 3.85 5.69 4.39 5 Sn, Tin (wt.%) 1.01 0.97 1.05 1.00 1 Sr, Strontium (ppm) 112 105 119 108 1 Ta, Tantalum (ppm) 0.94 0.71 1.16 IND II Tb, Terbium (ppm) 0.68 0.51 0.84 IND II Th, Thorium (ppm) 9.89 8.84 10.94 9.56 10 Ti, Titanium (wt.%) 0.277 0.264 0.290 0.267 0. | 25 | | | | Sm, Samarium (ppm) 4.77 3.85 5.69 4.39 5 Sn, Tin (wt.%) 1.01 0.97 1.05 1.00 1 Sr, Strontium (ppm) 112 105 119 108 1 Ta, Tantalum (ppm) 0.94 0.71 1.16 IND II Tb, Terbium (ppm) 0.68 0.51 0.84 IND II Th, Thorium (ppm) 9.89 8.84 10.94 9.56 10 Ti, Titanium (wt.%) 0.277 0.264 0.290 0.267 0. | 51 | | | | Sn, Tin (wt.%) 1.01 0.97 1.05 1.00 1 Sr, Strontium (ppm) 112 105 119 108 1 Ta, Tantalum (ppm) 0.94 0.71 1.16 IND II Tb, Terbium (ppm) 0.68 0.51 0.84 IND II Th, Thorium (ppm) 9.89 8.84 10.94 9.56 10 Ti, Titanium (wt.%) 0.277 0.264 0.290 0.267 0. | .80 | | | | Sr, Strontium (ppm) 112 105 119 108 1 Ta, Tantalum (ppm) 0.94 0.71 1.16 IND II Tb, Terbium (ppm) 0.68 0.51 0.84 IND II Th, Thorium (ppm) 9.89 8.84 10.94 9.56 10 Ti, Titanium (wt.%) 0.277 0.264 0.290 0.267 0. | 15 | | | | Ta, Tantalum (ppm) 0.94 0.71 1.16 IND II Tb, Terbium (ppm) 0.68 0.51 0.84 IND II Th, Thorium (ppm) 9.89 8.84 10.94 9.56 10 Ti, Titanium (wt.%) 0.277 0.264 0.290 0.267 0. | 03 | | | | Tb, Terbium (ppm) 0.68 0.51 0.84 IND II Th, Thorium (ppm) 9.89 8.84 10.94 9.56 10 Ti, Titanium (wt.%) 0.277 0.264 0.290 0.267 0. | 16 | | | | Th, Thorium (ppm) 9.89 8.84 10.94 9.56 10 Ti, Titanium (wt.%) 0.277 0.264 0.290 0.267 0. | ND | | | | Ti, Titanium (wt.%) 0.277 0.264 0.290 0.267 0. | ND | | | | | .22 | | | | Tm Thulium (nnm) 0.35 0.36 0.44 IND U | 288 | | | | Tm, Thulium (ppm) 0.35 0.26 0.44 IND II | ND | | | | U, Uranium (ppm) 2.45 1.91 2.99 2.12 2 | 78 | | | | Y, Yttrium (ppm) 22.7 20.0 25.3 21.5 2 | 3.8 | | | | Yb, Ytterbium (ppm) 2.40 1.86 2.94 2.22 2 | 58 | | | | 4-Acid Digestion | | | | | Ag, Silver (ppm) 1.39 1.28 1.50 1.32 1 | 46 | | | | Al, Aluminium (wt.%) 5.10 4.91 5.30 5.01 5 | 19 | | | | As, Arsenic (wt.%) 0.441 0.430 0.451 0.432 0. | 149 | | | | Ba, Barium (ppm) 386 367 404 372 3 | 99 | | | | Be, Beryllium (ppm) 3.82 3.56 4.08 3.69 3 | 95 | | | | Bi, Bismuth (ppm) 82 78 87 80 8 | 35 | | | SI unit equivalents: ppm (parts per million; 1×10^{-6}) \equiv mg/kg; wt.% (weight per cent) \equiv % (mass fraction). COA-1939-OREAS 145-R0 Page: 3 of 25 [†]These operationally defined measurands comply with the requirements of ISO 17034. Metrological traceability has been established either through the exclusive use of laboratories accredited to ISO/IEC 17025:2017, or through validated performance against existing Certified Reference Materials (CRMs). Note: intervals may appear asymmetric due to rounding. IND = indeterminate (due to limited reading resolution of the methods employed). Table 1 continued. | Table 1 continued. | | | | | | | | | | | |--------------------------------|--------------------|-------------|---------------|----------------------|-------|--|--|--|--|--| | Constituent | Certified | 95% Expande | d Uncertainty | 95% Tolerance Limits | | | | | | | | Constituent | Value [†] | Low | High | Low | High | | | | | | | 4-Acid Digestion continue | ed | | | | | | | | | | | Ca, Calcium (wt.%) | 7.27 | 7.03 | 7.52 | 7.13 | 7.42 | | | | | | | Ce, Cerium (ppm) | 51 | 48 | 55 | 50 | 53 | | | | | | | Co, Cobalt (ppm) | 16.1 | 15.2 | 17.0 | 15.6 | 16.6 | | | | | | | Cr, Chromium (ppm) | 51 | 46 | 55 | 48 | 53 | | | | | | | Cs, Caesium (ppm) | 6.48 | 6.11 | 6.85 | 6.31 | 6.65 | | | | | | | Cu, Copper (wt.%) | 0.132 | 0.129 | 0.135 | 0.129 | 0.134 | | | | | | | Dy, Dysprosium (ppm) | 2.58 | 2.27 | 2.89 | 2.42 | 2.74 | | | | | | | Er, Erbium (ppm) | 1.31 | 1.11 | 1.50 | 1.20 | 1.42 | | | | | | | Eu, Europium (ppm) | 0.84 | 0.74 | 0.95 | 0.79 | 0.90 | | | | | | | Fe, Iron (wt.%) | 9.43 | 9.21 | 9.65 | 9.28 | 9.57 | | | | | | | Ga, Gallium (ppm) | 19.2 | 18.4 | 20.0 | 18.6 | 19.8 | | | | | | | Gd, Gadolinium (ppm) | 3.58 | 3.10 | 4.06 | 3.40 | 3.77 | | | | | | | Hf, Hafnium (ppm) | 2.31 | 2.16 | 2.47 | 2.20 | 2.43 | | | | | | | Ho, Holmium (ppm) | 0.47 | 0.41 | 0.53 | 0.44 | 0.49 | | | | | | | In, Indium (ppm) | 3.37 | 3.00 | 3.74 | 3.10 | 3.64 | | | | | | | K, Potassium (wt.%) | 1.52 | 1.48 | 1.56 | 1.49 | 1.55 | | | | | | | La, Lanthanum (ppm) | 25.1 | 23.5 | 26.8 | 24.3 | 26.0 | | | | | | | Li, Lithium (ppm) | 86 | 81 | 91 | 85 | 87 | | | | | | | Lu, Lutetium (ppm) | 0.19 | 0.16 | 0.23 | IND | IND | | | | | | | Mg, Magnesium (wt.%) | 1.27 | 1.23 | 1.31 | 1.25 | 1.30 | | | | | | | Mn, Manganese (wt.%) | 0.065 | 0.063 | 0.068 | 0.065 | 0.066 | | | | | | | Mo, Molybdenum (ppm) | 3.11 | 2.85 | 3.37 | 2.92 | 3.29 | | | | | | | Na, Sodium (wt.%) | 0.693 | 0.667 | 0.720 | 0.680 | 0.707 | | | | | | | Nb, Niobium (ppm) | 9.64 | 8.55 | 10.73 | 9.13 | 10.14 | | | | | | | Nd, Neodymium (ppm) | 22.4 | 20.2 | 24.7 | 20.9 | 23.9 | | | | | | | Ni, Nickel (ppm) | 24.7 | 23.4 | 26.0 | 23.8 | 25.6 | | | | | | | P, Phosphorus (wt.%) | 0.047 | 0.045 | 0.049 | 0.046 | 0.049 | | | | | | | Pb, Lead (ppm) | 22.1 | 20.3 | 23.9 | 20.7 | 23.5 | | | | | | | Pr, Praseodymium (ppm) | 6.34 | 5.83 | 6.86 | 6.05 | 6.63 | | | | | | | Rb, Rubidium (ppm) | 113 | 107 | 119 | 110 | 116 | | | | | | | S, Sulphur (wt.%) | 4.45 | 4.36 | 4.54 | 4.38 | 4.52 | | | | | | | Sb, Antimony (ppm) | 3.99 | 3.54 | 4.45 | 3.69 | 4.29 | | | | | | | Sc, Scandium (ppm) | 8.51 | 8.07 | 8.95 | 8.24 | 8.78 | | | | | | | Sm, Samarium (ppm) | 4.46 | 4.05 | 4.87 | 4.18 | 4.74 | | | | | | | Sr, Strontium (ppm) | 111 | 107 | 115 | 108 | 113 | | | | | | | Clunit aquivalenta: npm (parta | | 26) " 10/ | | | | | | | | | SI unit equivalents: ppm (parts per million; 1×10^{-6}) \equiv mg/kg; wt.% (weight per cent) \equiv % (mass fraction). COA-1939-OREAS 145-R0 Page: 4 of 25 [†]These operationally defined measurands comply with the requirements of ISO 17034. Metrological traceability has been established either through the exclusive use of laboratories accredited to ISO/IEC 17025:2017, or through validated performance against existing Certified Reference Materials (CRMs). Note: intervals may appear asymmetric due to rounding. IND = indeterminate (due to limited reading resolution of the methods employed). Table 1 continued. | Constituent | Certified | 95% Expande | d Uncertainty | 95% Tolerance Limits | | | |---------------------------|--------------------|-------------|---------------|----------------------|-------|--| | Constituent | Value [†] | Low | High | Low | High | | | 4-Acid Digestion continue | ed | | | | | | | Ta, Tantalum (ppm) | 0.74 | 0.64 | 0.84 | 0.69 | 0.79 | | | Tb, Terbium (ppm) | 0.48 | 0.43 | 0.52 | 0.45 | 0.51 | | | Th, Thorium (ppm) | 9.64 | 8.91 | 10.37 | 9.26 | 10.02 | | | Ti, Titanium (wt.%) | 0.239 | 0.227 | 0.251 | 0.233 | 0.245 | | | TI, Thallium (ppm) | 0.57 | 0.54 | 0.60 | 0.54 | 0.60 |
 | Tm, Thulium (ppm) | 0.17 | 0.10 | 0.24 | IND | IND | | | U, Uranium (ppm) | 2.26 | 2.01 | 2.51 | 2.09 | 2.43 | | | V, Vanadium (ppm) | 56 | 54 | 58 | 55 | 58 | | | W, Tungsten (ppm) | 59 | 55 | 63 | 56 | 62 | | | Y, Yttrium (ppm) | 12.3 | 11.5 | 13.1 | 11.9 | 12.7 | | | Yb, Ytterbium (ppm) | 1.29 | 1.11 | 1.48 | 1.22 | 1.37 | | | Zn, Zinc (ppm) | 70 | 66 | 74 | 68 | 73 | | | Zr, Zirconium (ppm) | 77 | 69 | 84 | 73 | 80 | | SI unit equivalents: ppm (parts per million; 1×10^{-6}) \equiv mg/kg; wt.% (weight per cent) \equiv % (mass fraction). Note: intervals may appear asymmetric due to rounding. IND = indeterminate (due to limited reading resolution of the methods employed). Table 2. Indicative Values for OREAS 145. | Constituent | Unit | Value | Constituent | Unit | Value | Constituent | Unit | Value | | | | |--------------------------------|---------|----------|---------------------|------|-------|------------------|------|-------|--|--|--| | Borate Fusio | n XRF | | | | | | | | | | | | Bi | ppm | 109 | Hg | ppm | < 100 | Sc | ppm | < 10 | | | | | Cd | ppm | < 10 | In | ppm | < 100 | Se | ppm | < 100 | | | | | Ce | ppm | 78 | La | ppm | < 90 | Та | ppm | < 100 | | | | | CI | ppm | < 50 | Nb | ppm | 53 | Te | ppm | < 100 | | | | | Cr ₂ O ₃ | ppm | 81 | NiO | ppm | < 64 | TI | ppm | < 100 | | | | | Cs | ppm | < 100 | Pb | ppm | 150 | W | ppm | 85 | | | | | Ga | ppm | < 100 | Rb | ppm | 80 | Υ | ppm | 42.4 | | | | | Ge | ppm | < 100 | Sb | ppm | < 50 | ZrO ₂ | ppm | 181 | | | | | Thermogravi | metry | | | | | | | | | | | | H ₂ O- | wt.% | 0.480 | LOI ¹⁰⁰⁰ | wt.% | 5.48 | | | | | | | | Borate / Pero | xide Fu | sion ICP | | | | | | | | | | | Ag | ppm | < 0.5 | Lu | ppm | 0.37 | Se | ppm | < 20 | | | | | В | ppm | 2842 | Мо | ppm | 4.39 | Te | ppm | < 1 | | | | | Bi | ppm | 79 | Na | wt.% | 0.379 | TI | ppm | 0.59 | | | | | Cd | ppm | 119 | Nb | ppm | 12.2 | V | ppm | 60 | | | | | Ge | ppm | 2.48 | Pb | ppm | 31.8 | W | ppm | 80 | | | | | Hf | ppm | 4.93 | Re | ppm | < 0.1 | Zn | ppm | 78 | | | | SI unit equivalents: ppm (parts per million; 1×10^{-6}) \equiv mg/kg; wt.% (weight per cent) \equiv % (mass fraction). Note: the number of significant figures reported is not a reflection of the level of certainty of stated values. They are instead an artefact of ORE's in-house CRM-specific LIMS. COA-1939-OREAS 145-R0 Page: 5 of 25 [†]These operationally defined measurands comply with the requirements of ISO 17034. Metrological traceability has been established either through the exclusive use of laboratories accredited to ISO/IEC 17025:2017, or through validated performance against existing Certified Reference Materials (CRMs). # Table 2 continued. | Constituent | Unit | Value | Constituent | Unit | Value | Constituent | Unit | Value | | | | | |--|---------------------|-------|-------------|------|-------|-------------|------|-------|--|--|--|--| | Borate / Peroxide Fusion ICP continued | | | | | | | | | | | | | | Hg | ppm | < 5 | Sb | ppm | 4.84 | Zr | ppm | 162 | | | | | | In | ppm | 21.1 | Sc | ppm | 8.57 | | | | | | | | | 4-Acid Diges | 4-Acid Digestion | | | | | | | | | | | | | В | ppm | 23.7 | Hg | ppm | < 1 | Sn | wt.% | 0.025 | | | | | | Cd | ppm | 0.19 | Re | ppm | 0.002 | Te | ppm | 0.059 | | | | | | Ge | ppm | 0.14 | Se | ppm | 0.94 | | | | | | | | | Infrared Com | Infrared Combustion | | | | | | | | | | | | | S | wt.% | 4.38 | | | | | | | | | | | SI unit equivalents: ppm (parts per million; 1×10^{-6}) \equiv mg/kg; wt.% (weight per cent) \equiv % (mass fraction). Note: the number of significant figures reported is not a reflection of the level of certainty of stated values. They are instead an artefact of ORE's in-house CRM-specific LIMS. COA-1939-OREAS 145-R0 Page: 6 of 25 # **TABLE OF CONTENTS** | INTRODUCTION | 8 | |--|----| | SOURCE MATERIAL | 8 | | COMMINUTION AND HOMOGENISATION PROCEDURES | 8 | | PHYSICAL PROPERTIES | 9 | | MINERALOGY | 9 | | ANALYTICAL PROGRAM | 10 | | STATISTICAL ANALYSIS | 10 | | · · | | | , | LEGAL NOTICE | 24 | | DOCUMENT HISTORY | 24 | | CERTIFYING OFFICER | 24 | | QMS CERTIFICATION | 24 | | REFERENCES | 25 | | LIST OF TABLES | | | Table 1. Certified Values, Uncertainty & Tolerance Intervals in OREAS 145 | 2 | | Table 2. Indicative Values for OREAS 145 | 5 | | Table 3. Physical properties of OREAS 145. | 9 | | Table 4. Indicative mineralogy of OREAS 145 by semi-quantitative XRD analysis | 9 | | DURCE MATERIAL DIMMINUTION AND HOMOGENISATION PROCEDURES INSICAL PROPERTIES NERALOGY IALYTICAL PROGRAM ATISTICAL ANALYSIS Certified Values and their uncertainty intervals Indicative (uncertified) values Homogeneity Evaluation IRFORMANCE GATES IRTICIPATING LABORATORIES IREPARER AND SUPPLIER ETROLOGICAL TRACEABILITY DIMMUTABILITY ITENDED USE INIMUM SAMPLE SIZE IRIOD OF VALIDITY & STORAGE INSTRUCTIONS STRUCTIONS FOR HANDLING & CORRECT USE GAL NOTICE DOUMENT HISTORY IRTIFYING OFFICER AS CERTIFICATION IFFERENCES LIST OF TABLES ble 1. Certified Values, Uncertainty & Tolerance Intervals in OREAS 145. ble 2. Indicative Values for OREAS 145. ble 3. Physical properties of OREAS 145. ble 4. Indicative mineralogy of OREAS 145 by semi-quantitative XRD analysis. ble 5. Performance Gates for OREAS 145. LIST OF FIGURES gure 1. Sn by borate fusion XRF in OREAS 145. JULE OF TABLES BURE 2. Cu by borate fusion XRF in OREAS 145. JULE OF TABLES JULE 3. Sn by borate/peroxide fusion ICP in OREAS 145. JULE 3. Sn by borate/peroxide fusion ICP in OREAS 145. JULE 3. Sn by borate/peroxide fusion ICP in OREAS 145. JULE 4. Cu by borate/peroxide fusion ICP in OREAS 145. JULE 4. Cu by borate/peroxide fusion ICP in OREAS 145. JULE 4. Cu by borate/peroxide fusion ICP in OREAS 145. | 12 | | Table 1. Certified Values, Uncertainty & Tolerance Intervals in OREAS 145 | | | Figure 1. Sn by borate fusion XRF in OREAS 145 | 16 | | | | | Figure 3. Sn by borate/peroxide fusion ICP in OREAS 145 | 18 | | | | | Figure 5. Cu by 4-acid digestion in OREAS 145 | | #### INTRODUCTION OREAS reference materials are intended to provide a low-cost method of evaluating and improving the quality of analysis of geological samples. To the geologist they provide a means of implementing quality control in analytical data sets generated in exploration from the grass roots level through to prospect evaluation, and in grade control at mining operations. To the analyst they provide an effective means of calibrating analytical equipment, assessing new techniques and routinely monitoring in-house procedures. OREAS reference materials enable users to successfully achieve process control of these tasks because the observed variance from repeated analysis has its origin almost exclusively in the analytical process rather than the reference material itself. In evaluating laboratory performance with this CRM, the section headed 'Instructions for correct use' should be read carefully. Table 1 provides the certified values and their associated 95 % expanded uncertainty and tolerance intervals, Table 2 shows indicative values including major and trace element characterisation, Table 3 provides some indicative physical properties, Table 4 shows indicative mineralogy by semi-quantitative XRD analysis and Table 5 presents the performance gate intervals for all certified values. Tabulated results of all analytes together with uncorrected means, medians, standard deviations, relative standard deviations and per cent deviation of lab means from the corrected mean of means (PDM³) are presented in the detailed certification data for this CRM (OREAS 145-DataPack.1.0.250724_134809.xlsx). The certified values and uncertainties in this Certificate are the sole authoritative figures. Any additional significant figures in the DataPack are provided for reference only and do not affect the certified results. Results are also presented in scatter plots for Sn and Cu by fusion XRF, Sn and Cu by fusion ICP and Cu by 4-aicd digestion in Figures 1 to 5 respectively, together with ±3SD (magenta) and ±5 % (yellow) control lines and certified value (green line). Accepted individual results are coloured blue and individual and dataset outliers are identified in red and violet, respectively. # **SOURCE MATERIAL** OREAS 145 is a certified reference material (CRM) produced from a blend of tin-copper sulphide ores, hornfels, granodiorite, and calcium carbonate. The ores were sourced from the Renison Bell tin deposit in western Tasmania, Australia. Mineralisation is structurally controlled, with cassiterite hosted in silica- and tourmaline-altered veins within carbonate-rich
metasedimentary rocks of the Mount Read Volcanics. The deposit is genetically linked to Devonian granite intrusions. Cassiterite (SnO₂) is the dominant tin-bearing mineral, accompanied by sulphide phases such as pyrrhotite, arsenopyrite, chalcopyrite, and stannite. ## COMMINUTION AND HOMOGENISATION PROCEDURES The materials constituting OREAS 145 was prepared in the following manner: - Drying the barren materials to constant mass at 105 °C; - Drying the sulphide ores to constant mass at 85 °C; - Crushing and multi-stage milling of the barren materials to >95% minus 75 microns; COA-1939-OREAS 145-R0 Page: 8 of 25 - Crushing and multi-stage milling of the ores to 100% minus 30 microns; - Blending the ores and barren materials in appropriate proportions to achieve desired grades; - Homogenisation using OREAS' novel processing technologies; - Packaging in 10 g units in laminated foil pouches and 500 g units in plastic wide-mouth jars. ## PHYSICAL PROPERTIES OREAS 145 was tested at ORE Research & Exploration Pty Ltd's onsite facility for various physical properties. Table 3 presents these findings that should be used for informational purposes only. Table 3. Physical properties of OREAS 145. | Bulk Density (kg/m³) | Bulk Density (kg/m³) Moisture (wt.%) | | Munsell Color‡ | |----------------------|--------------------------------------|----|----------------| | 748 | 0.46 | N5 | Medium Gray | [‡]The Munsell Rock Color Chart helps geologists and archeologists communicate with colour more effectively by cross-referencing ISCC-NBS colour names with unique Munsell alpha-numeric colour notations for rock colour samples. ## **MINERALOGY** The semi-quantitative XRD results shown in Table 4 below were undertaken by ALS Metallurgy in Balcatta, Western Australia. The results have been normalised to 100 % and represent the relative proportion of crystalline material. Totals greater or less than 100 % are due to rounding errors. 'Clay mineral' appears to be mainly illite, vermiculite, and smectite. 'Kandite group' appears to be mainly kaolinite. A trace of dolomite - ankerite may be present and some amorphous material may also be present in the sample. Table 4. Indicative mineralogy of OREAS 145 by semi-quantitative XRD analysis. | Mineral / Mineral Group | % (mass ratio) | | | | | |-------------------------------|----------------|--|--|--|--| | Clay mineral | < 1 | | | | | | Chlorite | 3 | | | | | | Kandite group | < 1 | | | | | | Annite - biotite - phlogopite | 20 | | | | | | Muscovite | 3 | | | | | | Talc | 1 | | | | | | Plagioclase | 9 | | | | | | K-feldspar | 3 | | | | | | Cordierite | 1 | | | | | | Tourmaline | 3 | | | | | | Quartz | 31 | | | | | | Calcite | 15 | | | | | | Siderite | < 1 | | | | | | Pyrite | 1 | | | | | | Pyrrhotite | 7 | | | | | | Cassiterite | 2 | | | | | COA-1939-OREAS 145-R0 Page: 9 of 25 ## ANALYTICAL PROGRAM Eighteen commercial analytical laboratories participated in the program to certify the elements reported in Table 1. The following methods were employed: - Lithium borate fusion whole rock analysis package by X-ray fluorescence (up to 14 laboratories depending on the element); - Thermogravimetry: Loss on Ignition (LOI) at 1000 °C (9 laboratories used a thermogravimetric analyser, 2 laboratories included LOI with their fusion package and 3 laboratories used a conventional muffle furnace); - Lithium borate or sodium peroxide fusion with full suite ICP-OES and ICP-MS elemental packages (up to 12 laboratories depending on the element); - 4-acid (HNO₃-HF-HClO₄-HCl) digestion with full suite ICP-OES and ICP-MS elemental packages (up to 16 laboratories depending on the element). For the round robin program, six 800 g test units were collected at predetermined intervals during the bagging stage, immediately after homogenisation. These units are considered representative of the entire prepared batch. Each participating laboratory received six test portions, obtained by subsampling 10 g from each of the six distinct 800 g units. Homogeneity was assessed by submitting 12 pulp samples to a single laboratory for analysis. Paired samples were drawn from each of the six test units, enabling an Analysis of Variance (ANOVA) to compare within-unit and between-unit variances. This statistical method provides a relative measure of homogeneity and tests the null hypothesis that all units derive from the same population distribution (refer to the 'Homogeneity Evaluation' section below). # STATISTICAL ANALYSIS Certified Values and their uncertainty intervals (Table 1) have been determined for each analyte following removal of individual, laboratory dataset (batch) and 3SD outliers (single iteration). For individual outliers within a laboratory batch the z-score test is used in combination with a second method that determines the per cent deviation of the individual value from the batch median. Outliers in general are selected on the basis of z-scores > 2.5 and with per cent deviations (i) > 3 and (ii) more than three times the average absolute per cent deviation for the batch. Each laboratory data set mean is tested for outlying status based on z-score discrimination and rejected if > 2.5. After individual and laboratory data set (batch) outliers have been eliminated a non-iterative 3 standard deviation filter is applied, with those values lying outside this window also relegated to outlying status. However, while statistics are taken into account, the exercise of a statistician's prerogative plays a significant role in identifying outliers. **95% Expanded Uncertainty** provides a 95 % probability that the true value of the analyte under consideration lies between the upper and lower limits and is calculated according to the method outlined in [5] and [14]. All known or suspected sources of bias have been investigated or taken into account. COA-1939-OREAS 145-R0 Page: 10 of 25 **Indicative (uncertified) values** (Table 2) are present where the number of laboratories reporting a particular analyte is insufficient (< 5) to support certification or where interlaboratory consensus is poor. This data is intended for 'informational purposes' only. **Standard Deviation** intervals (see Table 5, 'Performance Gates') provide an indication of a level of performance that might reasonably be expected from a laboratory being monitored by this CRM in a QA/QC program. They take into account errors attributable to measurement uncertainty and CRM variability. For an effective CRM the contribution of the latter should be negligible in comparison to measurement errors. The Standard Deviation values include all sources of measurement uncertainty: between-lab variance, within-run variance (precision errors) and CRM variability. The SD for each analyte's certified value is calculated from the same filtered data set used to determine the certified value, i.e., after removal of all individual, lab dataset (batch) and 3SD outliers (single iteration). These outliers can only be removed after the absolute homogeneity of the CRM has been independently established, i.e., the outliers must be confidently deemed to be analytical rather than arising from inhomogeneity of the CRM. *The standard deviation is then calculated for each analyte from the pooled accepted analyses generated from the certification program.* ## **Homogeneity Evaluation** The tolerance limits (ISO 16269:2014) shown in Table 1 were determined using an analysis of precision errors method and are considered a conservative estimate of true homogeneity. The meaning of tolerance limits may be illustrated for Sn by fusion XRF, where 99 % of the time (1- α =0.99) at least 95 % of subsamples (ρ =0.95) will have concentrations lying between 1.04 and 1.06 wt.%. Put more precisely, this means that if the same number of subsamples were taken and analysed in the same manner repeatedly, 99 % of the tolerance intervals so constructed would cover at least 95 % of the total population, and 1 % of the tolerance intervals would cover less than 95 % of the total population. *Please note that tolerance limits pertain to the homogeneity of the CRM only and should not be used as control limits for laboratory performance.* #### **Analysis of Variance (ANOVA) Study** In addition to the precision error method outlined above, homogeneity was also evaluated using an ANOVA study. This involved sending 12 x 20 g pulp samples to the ALS Brisbane, laboratory for analysis by oxidising fusion with X-ray fluorescence finish (code ME- XRF15b). The 12 samples consisted of paired samples from each of the six sampling units to enable an Analysis of Variance (ANOVA) by comparison of within- and between-unit variances across the six pairs. The ANOVA enables a relative measure of homogeneity and permits a test of the null hypothesis that all 'units' are drawn from the same population distribution. An ANOVA constructed in this way tests that no statistically significant difference exists in the variance between-units to that of the variance within-units. A *p*-value < 0.05 would indicate rejection of the null hypothesis at the 95 % confidence level (i.e., a significant difference likely does exist; meaning there is evidence of heterogeneity between the sample intervals). All *p*-values were found to be statistically insignificant, and the Null Hypothesis is therefore retained. It is important to note that ANOVA provides a relative measure of homogeneity and that a CRM having poor absolute homogeneity can still pass these tests if the within-unit heterogeneity is large and similar across all units. Based on the statistical analysis of the results of the interlaboratory certification program, it can be concluded that OREAS 145 is fit-for-purpose as a certified reference material (see 'Intended Use' below). COA-1939-OREAS 145-R0 Page: 11 of 25 #### PERFORMANCE GATES Table 5 below shows intervals calculated for two and three standard deviations. As a guide these intervals may be regarded as warning or rejection
for multiple 2SD outliers, or rejection for individual 3SD outliers in QC monitoring, although their precise application should be at the discretion of the QC manager concerned (also see 'Intended Use' section below). Westgard Rules extend the basics of single-rule QC monitoring using multi-rules (for more information visit www.westgard.com/mltirule.htm). A second method utilises a 5 % window calculated directly from the certified value. Standard deviation is also shown in relative percent for one, two and three relative standard deviations (1RSD, 2RSD and 3RSD) to facilitate an appreciation of the magnitude of these numbers and a comparison with the 5 % window. Caution should be exercised when concentration levels approach lower limits of detection of the analytical methods employed as performance gates calculated from standard deviations tend to be excessively wide whereas those determined by the 5 % method are too narrow. One approach used at commercial laboratories is to set the acceptance criteria at twice the detection level (DL) ± 10 %. i.e., Certified Value ±10 % ±2DL [1]. Table 5. Performance Gates for OREAS 145. | 0 | Certified | | Absolute | Standard | Deviations | S | Relative Standard Deviations | | | 5 % window | | |---------------------------------------|-----------|-------|------------|-------------|------------|-------------|------------------------------|--------|--------|------------|-------| | Constituent | Value | 1SD | 2SD
Low | 2SD
High | 3SD
Low | 3SD
High | 1RSD | 2RSD | 3RSD | Low | High | | Borate Fusion | XRF | | | | | | | | | | | | Al ₂ O ₃ , wt.% | 10.11 | 0.115 | 9.88 | 10.34 | 9.76 | 10.45 | 1.14% | 2.28% | 3.42% | 9.60 | 10.61 | | As, wt.% | 0.441 | 0.020 | 0.402 | 0.481 | 0.383 | 0.500 | 4.44% | 8.87% | 13.31% | 0.419 | 0.464 | | BaO, ppm | 426 | 45 | 336 | 516 | 291 | 561 | 10.57% | 21.15% | 31.72% | 405 | 447 | | CaO, wt.% | 10.40 | 0.119 | 10.17 | 10.64 | 10.05 | 10.76 | 1.14% | 2.28% | 3.42% | 9.88 | 10.93 | | Co, ppm | < 100 | IND | Cu, wt.% | 0.129 | 0.005 | 0.119 | 0.139 | 0.114 | 0.144 | 3.89% | 7.78% | 11.66% | 0.123 | 0.135 | | Fe ₂ O ₃ , wt.% | 13.64 | 0.339 | 12.97 | 14.32 | 12.63 | 14.66 | 2.49% | 4.97% | 7.46% | 12.96 | 14.33 | | HfO ₂ , ppm | < 100 | IND | K ₂ O, wt.% | 1.83 | 0.023 | 1.78 | 1.87 | 1.76 | 1.90 | 1.25% | 2.51% | 3.76% | 1.74 | 1.92 | | MgO, wt.% | 2.32 | 0.067 | 2.18 | 2.45 | 2.11 | 2.52 | 2.90% | 5.81% | 8.71% | 2.20 | 2.43 | | MnO, wt.% | 0.087 | 0.004 | 0.078 | 0.096 | 0.074 | 0.100 | 5.11% | 10.23% | 15.34% | 0.083 | 0.091 | | Mo, ppm | < 50 | IND | Na ₂ O, wt.% | 0.881 | 0.121 | 0.639 | 1.123 | 0.518 | 1.244 | 13.74% | 27.48% | 41.22% | 0.837 | 0.925 | | P ₂ O ₅ , wt.% | 0.106 | 0.005 | 0.095 | 0.117 | 0.090 | 0.122 | 5.08% | 10.17% | 15.25% | 0.101 | 0.111 | | SiO ₂ , wt.% | 46.18 | 0.674 | 44.83 | 47.53 | 44.16 | 48.20 | 1.46% | 2.92% | 4.38% | 43.87 | 48.49 | | Sn, wt.% | 1.05 | 0.017 | 1.02 | 1.09 | 1.00 | 1.10 | 1.62% | 3.24% | 4.86% | 1.00 | 1.10 | | SO ₃ , wt.% | 11.47 | 0.243 | 10.99 | 11.96 | 10.74 | 12.20 | 2.12% | 4.24% | 6.37% | 10.90 | 12.05 | | SrO, ppm | 124 | 12 | 100 | 148 | 88 | 160 | 9.56% | 19.12% | 28.67% | 118 | 130 | | TiO ₂ , wt.% | 0.464 | 0.016 | 0.432 | 0.495 | 0.417 | 0.511 | 3.37% | 6.74% | 10.12% | 0.441 | 0.487 | | V ₂ O ₅ , ppm | 113 | 22 | 69 | 157 | 47 | 179 | 19.39% | 38.77% | 58.16% | 108 | 119 | | Zn, ppm | 76 | 13 | 51 | 101 | 38 | 114 | 16.67% | 33.34% | 50.01% | 72 | 80 | SI unit equivalents: ppm (parts per million; 1 x 10^{-6}) \equiv mg/kg; wt.% (weight per cent) \equiv % (mass fraction). Note 1: intervals may appear asymmetric due to rounding; IND = indeterminate. Note 2: the number of decimal places quoted does not imply accuracy of the certified value to this level but are given to minimise rounding errors when calculating 2SD and 3SD windows. COA-1939-OREAS 145-R0 Page: 12 of 25 Table 5 continued. | | Certified | | Absolute | Standard | Deviations | S | Relative Standard Deviations | | | 5 % window | | |----------------|-------------|-------|------------|-------------|------------|-------------|------------------------------|--------|--------|------------|-------| | Constituent | Value | 1SD | 2SD
Low | 2SD
High | 3SD
Low | 3SD
High | 1RSD | 2RSD | 3RSD | Low | High | | Borate / Perox | kide Fusion | ICP | | | I. | | l | l | | l | ı | | Al, wt.% | 5.35 | 0.130 | 5.09 | 5.61 | 4.96 | 5.74 | 2.43% | 4.86% | 7.29% | 5.08 | 5.61 | | As, wt.% | 0.438 | 0.021 | 0.396 | 0.480 | 0.375 | 0.501 | 4.77% | 9.55% | 14.32% | 0.416 | 0.460 | | Ba, ppm | 389 | 16 | 357 | 420 | 341 | 436 | 4.04% | 8.08% | 12.13% | 369 | 408 | | Be, ppm | 4.45 | 0.68 | 3.09 | 5.81 | 2.41 | 6.49 | 15.29% | 30.57% | 45.86% | 4.23 | 4.67 | | Ca, wt.% | 7.55 | 0.214 | 7.12 | 7.98 | 6.91 | 8.19 | 2.84% | 5.67% | 8.51% | 7.17 | 7.93 | | Ce, ppm | 51 | 4.0 | 43 | 59 | 39 | 63 | 7.77% | 15.55% | 23.32% | 49 | 54 | | Co, ppm | 17.5 | 0.78 | 15.9 | 19.1 | 15.2 | 19.8 | 4.46% | 8.91% | 13.37% | 16.6 | 18.4 | | Cr, ppm | 64 | 10 | 44 | 84 | 33 | 94 | 15.85% | 31.70% | 47.56% | 61 | 67 | | Cs, ppm | 6.29 | 0.64 | 5.01 | 7.58 | 4.36 | 8.22 | 10.22% | 20.44% | 30.66% | 5.98 | 6.61 | | Cu, wt.% | 0.133 | 0.003 | 0.127 | 0.140 | 0.124 | 0.143 | 2.29% | 4.59% | 6.88% | 0.127 | 0.140 | | Dy, ppm | 4.29 | 0.296 | 3.70 | 4.88 | 3.40 | 5.18 | 6.89% | 13.78% | 20.67% | 4.08 | 4.51 | | Er, ppm | 2.49 | 0.33 | 1.83 | 3.14 | 1.51 | 3.46 | 13.10% | 26.19% | 39.29% | 2.36 | 2.61 | | Eu, ppm | 0.91 | 0.11 | 0.69 | 1.13 | 0.58 | 1.24 | 12.00% | 24.00% | 36.00% | 0.87 | 0.96 | | Fe, wt.% | 9.48 | 0.184 | 9.11 | 9.85 | 8.93 | 10.04 | 1.94% | 3.88% | 5.83% | 9.01 | 9.96 | | Ga, ppm | 19.7 | 0.76 | 18.2 | 21.2 | 17.4 | 22.0 | 3.88% | 7.76% | 11.64% | 18.7 | 20.7 | | Gd, ppm | 4.35 | 0.64 | 3.06 | 5.64 | 2.42 | 6.28 | 14.79% | 29.59% | 44.38% | 4.13 | 4.57 | | Ho, ppm | 0.86 | 0.12 | 0.63 | 1.10 | 0.51 | 1.22 | 13.78% | 27.55% | 41.33% | 0.82 | 0.91 | | K, wt.% | 1.55 | 0.075 | 1.40 | 1.70 | 1.33 | 1.78 | 4.83% | 9.66% | 14.48% | 1.47 | 1.63 | | La, ppm | 24.9 | 2.12 | 20.6 | 29.1 | 18.5 | 31.2 | 8.51% | 17.02% | 25.53% | 23.6 | 26.1 | | Li, ppm | 87 | 5.9 | 75 | 98 | 69 | 104 | 6.81% | 13.62% | 20.43% | 82 | 91 | | Mg, wt.% | 1.37 | 0.024 | 1.32 | 1.42 | 1.30 | 1.44 | 1.78% | 3.55% | 5.33% | 1.30 | 1.44 | | Mn, wt.% | 0.069 | 0.001 | 0.066 | 0.072 | 0.065 | 0.073 | 1.96% | 3.92% | 5.88% | 0.066 | 0.073 | | Nd, ppm | 23.7 | 1.44 | 20.9 | 26.6 | 19.4 | 28.1 | 6.06% | 12.13% | 18.19% | 22.6 | 24.9 | | Ni, ppm | 24.9 | 6.3 | 12.2 | 37.6 | 5.9 | 43.9 | 25.46% | 50.92% | 76.38% | 23.7 | 26.1 | | P, wt.% | 0.047 | 0.003 | 0.042 | 0.053 | 0.039 | 0.056 | 5.74% | 11.47% | 17.21% | 0.045 | 0.050 | | Pr, ppm | 6.32 | 0.337 | 5.65 | 7.00 | 5.31 | 7.33 | 5.34% | 10.67% | 16.01% | 6.01 | 6.64 | | Rb, ppm | 119 | 6 | 106 | 132 | 100 | 138 | 5.39% | 10.79% | 16.18% | 113 | 125 | | S, wt.% | 4.45 | 0.074 | 4.31 | 4.60 | 4.23 | 4.68 | 1.67% | 3.34% | 5.02% | 4.23 | 4.68 | | Si, wt.% | 21.96 | 0.713 | 20.54 | 23.39 | 19.82 | 24.10 | 3.25% | 6.50% | 9.75% | 20.86 | 23.06 | | Sm, ppm | 4.77 | 0.66 | 3.45 | 6.09 | 2.80 | 6.74 | 13.79% | 27.57% | 41.36% | 4.53 | 5.01 | | Sn, wt.% | 1.01 | 0.038 | 0.94 | 1.09 | 0.90 | 1.13 | 3.79% | 7.57% | 11.36% | 0.96 | 1.06 | | Sr, ppm | 112 | 4 | 104 | 120 | 100 | 124 | 3.64% | 7.27% | 10.91% | 106 | 118 | | Ta, ppm | 0.94 | 0.13 | 0.68 | 1.20 | 0.55 | 1.33 | 13.93% | 27.86% | 41.78% | 0.89 | 0.98 | | Tb, ppm | 0.68 | 0.13 | 0.42 | 0.93 | 0.29 | 1.06 | 18.96% | 37.92% | 56.88% | 0.64 | 0.71 | | Th, ppm | 9.89 | 0.679 | 8.53 | 11.25 | 7.85 | 11.93 | 6.86% | 13.72% | 20.59% | 9.40 | 10.39 | | Ti, wt.% | 0.277 | 0.009 | 0.258 | 0.296 | 0.249 | 0.306 | 3.41% | 6.81% | 10.22% | 0.263 | 0.291 | | Tm, ppm | 0.35 | 0.06 | 0.24 | 0.47 | 0.18 | 0.52 | 15.99% | 31.98% | 47.97% | 0.34 | 0.37 | | U, ppm | 2.45 | 0.31 | 1.83 | 3.07 | 1.52 | 3.38 | 12.70% | 25.39% | 38.09% | 2.33 | 2.57 | | Y, ppm | 22.7 | 2.23 | 18.2 | 27.1 | 16.0 | 29.3 | 9.84% | 19.68% | 29.52% | 21.5 | 23.8 | | Yb, ppm | 2.40 | 0.31 | 1.77 | 3.03 | 1.46 | 3.34 | 13.06% | 26.12% | 39.19% | 2.28 | 2.52 | SI unit equivalents: ppm (parts per million; 1×10^{-6}) \equiv mg/kg; wt.% (weight per cent) \equiv % (mass fraction). Note 1: intervals may appear asymmetric due to rounding. Note 2: the number of decimal places quoted does not imply accuracy of the certified value to this level but are given to minimise rounding errors when calculating 2SD and 3SD windows. COA-1939-OREAS 145-R0 Page: 13 of 25 Table 5 continued. | | Absolute Standard Deviations Relative | | | | | | Relative Standard Deviations | | | 5 % window | | |---------------------|---------------------------------------|--------------|------------|------------|------------|------------|------------------------------|----------------|-----------------|------------|------------| | Constituent | Certified
Value | 1SD | 2SD | 2SD | 3SD | 3SD | 1RSD | 2RSD | 3RSD | Low | High | | 4.4.1101 | | 100 | Low | High | Low | High | IIIOD | 21100 | 31100 | LOW | riigii | | 4-Acid Digest | 1 | 0.45 | 4.40 | 1.00 | 0.05 | 4.00 | 40.400/ | 00.000/ | 04.440/ | 4.00 | 4.40 | | Ag, ppm | 1.39 | 0.15 | 1.10 | 1.68 | 0.95 | 1.83 | 10.48% | 20.96% | 31.44% | 1.32 | 1.46 | | Al, wt.% | 5.10 | 0.242 | 4.62 | 5.59 | 4.38 | 5.83 | 4.75% | 9.50% | 14.25% | 4.85 | 5.36 | | As, wt.% | 0.441 | 0.012 | 0.417 | 0.464 | 0.406 | 0.476 | 2.65% | 5.30% | 7.96% | 0.419 | 0.463 | | Ba, ppm | 386 | 16 | 354 | 417 | 339 | 432 | 4.04% | 8.08% | 12.11% | 366 | 405 | | Be, ppm | 3.82 | 0.194
3.5 | 3.43 | 4.21
89 | 3.23 | 4.40
93 | 5.10% | 10.19% | 15.29% | 3.63 | 4.01 | | Bi, ppm
Ca, wt.% | 82
7.27 | 0.223 | 75
6.83 | 7.72 | 72
6.60 | 7.94 | 4.27%
3.07% | 8.54%
6.14% | 12.81%
9.21% | 78
6.91 | 87
7.64 | | Ce, ppm | 51 | 3.5 | 44 | 58 | 41 | 62 | 6.82% | 13.64% | 20.46% | 49 | 54 | | | 16.1 | 0.92 | 14.3 | 17.9 | 13.3 | 18.9 | 5.72% | 11.44% | 17.16% | 15.3 | 16.9 | | Co, ppm
Cr, ppm | 51 | 6 |
39 | 62 | 33 | 68 | 11.43% | 22.86% | 34.29% | 48 | 53 | | Cs, ppm | 6.48 | 0.365 | 5.75 | 7.21 | 5.38 | 7.57 | 5.64% | 11.28% | 16.92% | 6.15 | 6.80 | | Cu, wt.% | 0.132 | 0.002 | 0.127 | 0.137 | 0.125 | 0.139 | 1.78% | 3.55% | 5.33% | 0.13 | 0.138 | | Dy, ppm | 2.58 | 0.251 | 2.08 | 3.08 | 1.83 | 3.33 | 9.74% | 19.49% | 29.23% | 2.45 | 2.71 | | Er, ppm | 1.31 | 0.19 | 0.92 | 1.69 | 0.73 | 1.88 | 14.68% | 29.36% | 44.04% | 1.24 | 1.37 | | Eu, ppm | 0.84 | 0.068 | 0.71 | 0.98 | 0.64 | 1.05 | 8.11% | 16.21% | 24.32% | 0.80 | 0.89 | | Fe, wt.% | 9.43 | 0.139 | 9.15 | 9.71 | 9.01 | 9.84 | 1.48% | 2.95% | 4.43% | 8.96 | 9.90 | | Ga, ppm | 19.2 | 0.86 | 17.5 | 20.9 | 16.6 | 21.8 | 4.49% | 8.98% | 13.47% | 18.3 | 20.2 | | Gd, ppm | 3.58 | 0.41 | 2.76 | 4.40 | 2.35 | 4.81 | 11.42% | 22.84% | 34.26% | 3.40 | 3.76 | | Hf, ppm | 2.31 | 0.172 | 1.97 | 2.66 | 1.80 | 2.83 | 7.46% | 14.91% | 22.37% | 2.20 | 2.43 | | Ho, ppm | 0.47 | 0.06 | 0.34 | 0.59 | 0.28 | 0.65 | 13.23% | 26.46% | 39.69% | 0.44 | 0.49 | | In, ppm | 3.37 | 0.331 | 2.71 | 4.03 | 2.38 | 4.36 | 9.81% | 19.63% | 29.44% | 3.20 | 3.54 | | K, wt.% | 1.52 | 0.036 | 1.45 | 1.59 | 1.41 | 1.63 | 2.37% | 4.75% | 7.12% | 1.44 | 1.59 | | La, ppm | 25.1 | 1.77 | 21.6 | 28.7 | 19.8 | 30.4 | 7.03% | 14.05% | 21.08% | 23.9 | 26.4 | | Li, ppm | 86 | 7.5 | 71 | 101 | 63 | 108 | 8.75% | 17.50% | 26.24% | 82 | 90 | | Lu, ppm | 0.19 | 0.04 | 0.12 | 0.27 | 0.08 | 0.31 | 18.96% | 37.92% | 56.88% | 0.18 | 0.20 | | Mg, wt.% | 1.27 | 0.044 | 1.18 | 1.36 | 1.14 | 1.40 | 3.43% | 6.86% | 10.29% | 1.21 | 1.33 | | Mn, wt.% | 0.065 | 0.003 | 0.060 | 0.071 | 0.057 | 0.074 | 4.35% | 8.69% | 13.04% | 0.062 | 0.069 | | Mo, ppm | 3.11 | 0.252 | 2.60 | 3.61 | 2.35 | 3.87 | 8.12% | 16.24% | 24.35% | 2.95 | 3.26 | | Na, wt.% | 0.693 | 0.037 | 0.620 | 0.767 | 0.584 | 0.803 | 5.27% | 10.53% | 15.80% | 0.659 | 0.728 | | Nb, ppm | 9.64 | 1.51 | 6.62 | 12.66 | 5.11 | 14.16 | 15.66% | 31.31% | 46.97% | 9.16 | 10.12 | | Nd, ppm | 22.4 | 1.89 | 18.6 | 26.2 | 16.7 | 28.1 | 8.43% | 16.87% | 25.30% | 21.3 | 23.5 | | Ni, ppm | 24.7 | 1.18 | 22.3 | 27.0 | 21.2 | 28.2 | 4.76% | 9.52% | 14.28% | 23.5 | 25.9 | | P, wt.% | 0.047 | 0.002 | 0.044 | 0.051 | 0.042 | 0.053 | 3.85% | 7.69% | 11.54% | 0.045 | 0.050 | | Pb, ppm | 22.1 | 1.72 | 18.7 | 25.5 | 16.9 | 27.3 | 7.78% | 15.56% | 23.34% | 21.0 | 23.2 | | Pr, ppm | 6.34 | 0.222 | 5.90 | 6.79 | 5.68 | 7.01 | 3.50% | 7.00% | 10.50% | 6.03 | 6.66 | | Rb, ppm | 113 | 8 | 97 | 129 | 90 | 137 | 6.93% | 13.86% | 20.79% | 107 | 119 | | S, wt.% | 4.45 | 0.047 | 4.36 | 4.54 | 4.31 | 4.59 | 1.05% | 2.09% | 3.14% | 4.23 | 4.67 | | Sb, ppm | 3.99 | 0.66 | 2.67 | 5.31 | 2.01 | 5.97 | 16.54% | 33.08% | 49.62% | 3.79 | 4.19 | | Sc, ppm | 8.51 | 0.393 | 7.73 | 9.30 | 7.33 | 9.69 | 4.62% | 9.23% | 13.85% | 8.09 | 8.94 | | Sm, ppm | 4.46 | 0.325 | 3.81 | 5.11 | 3.49 | 5.43 | 7.28% | 14.56% | 21.84% | 4.24 | 4.68 | | Sr, ppm | 111 | 5 | 101 | 121 | 96 | 126 | 4.42% | 8.84% | 13.25% | 105 | 116 | | Ta, ppm | 0.74 | 0.12 | 0.50 | 0.98 | 0.37 | 1.11 | 16.46% | 32.92% | 49.39% | 0.70 | 0.78 | | Tb, ppm | 0.48 | 0.024 | 0.43 | 0.53 | 0.41 | 0.55 | 5.02% | 10.04% | 15.06% | 0.45 | 0.50 | SI unit equivalents: ppm (parts per million; 1×10^{-6}) \equiv mg/kg; wt.% (weight per cent) \equiv % (mass fraction). Note 1: intervals may appear asymmetric due to rounding. Note 2: the number of decimal places quoted does not imply accuracy of the certified value to this level but are given to minimise rounding errors when calculating 2SD and 3SD windows. COA-1939-OREAS 145-R0 Page: 14 of 25 #### Table 5 continued. | Constituent | Certified
Value | Absolute Standard Deviations | | | | | Relative Standard Deviations | | | 5 % window | | |----------------------------|--------------------|------------------------------|------------|-------------|------------|-------------|------------------------------|--------|--------|------------|-------| | | | 1SD | 2SD
Low | 2SD
High | 3SD
Low | 3SD
High | 1RSD | 2RSD | 3RSD | Low | High | | 4-Acid Digestion continued | | | | | | | | | | | | | Th, ppm | 9.64 | 0.619 | 8.41 | 10.88 | 7.79 | 11.50 | 6.41% | 12.83% | 19.24% | 9.16 | 10.12 | | Ti, wt.% | 0.239 | 0.019 | 0.202 | 0.276 | 0.184 | 0.295 | 7.75% | 15.50% | 23.25% | 0.227 | 0.251 | | TI, ppm | 0.57 | 0.030 | 0.51 | 0.63 | 0.48 | 0.66 | 5.20% | 10.41% | 15.61% | 0.54 | 0.60 | | Tm, ppm | 0.17 | 0.03 | 0.11 | 0.23 | 0.08 | 0.26 | 16.90% | 33.80% | 50.70% | 0.16 | 0.18 | | U, ppm | 2.26 | 0.181 | 1.90 | 2.62 | 1.72 | 2.80 | 8.03% | 16.05% | 24.08% | 2.15 | 2.37 | | V, ppm | 56 | 2.5 | 51 | 61 | 49 | 64 | 4.52% | 9.03% | 13.55% | 53 | 59 | | W, ppm | 59 | 2.9 | 53 | 65 | 50 | 68 | 4.85% | 9.70% | 14.54% | 56 | 62 | | Y, ppm | 12.3 | 1.16 | 10.0 | 14.6 | 8.8 | 15.8 | 9.46% | 18.91% | 28.37% | 11.7 | 12.9 | | Yb, ppm | 1.29 | 0.20 | 0.89 | 1.70 | 0.69 | 1.90 | 15.52% | 31.03% | 46.55% | 1.23 | 1.36 | | Zn, ppm | 70 | 5.4 | 59 | 81 | 54 | 86 | 7.66% | 15.33% | 22.99% | 67 | 74 | | Zr, ppm | 77 | 9 | 58 | 96 | 48 | 105 | 12.34% | 24.67% | 37.01% | 73 | 80 | SI unit equivalents: ppm (parts per million; 1×10^{-6}) \equiv mg/kg; wt.% (weight per cent) \equiv % (mass fraction). Note 1: intervals may appear asymmetric due to rounding. Note 2: the number of decimal places quoted does not imply accuracy of the certified value to this level but are given to minimise rounding errors when calculating 2SD and 3SD windows. ## PARTICIPATING LABORATORIES - 1. Actlabs, Ancaster, Ontario, Canada - 2. ALS, Brisbane, QLD, Australia - 3. ALS, Lima, Peru - 4. ALS, Loughrea, Galway, Ireland - 5. ALS, Malaga, WA, Australia - 6. ALS, Vancouver, BC, Canada - 7. American Assay Laboratories, Sparks, Nevada, USA - 8. ARGETEST Mineral Processing, Ankara, Central Anatolia, Turkey - 9. Intertek, Perth, WA, Australia - 10. Paragon Geochemical Laboratories, Sparks, Nevada, USA - 11. PT Geoservices Ltd, Cikarang, Jakarta Raya, Indonesia - 12. PT Intertek Utama Services, Jakarta Timur, DKI Jakarta, Indonesia - 13. Reminex Centre de Recherche, Marrakesh, Marrakesh-Safi, Morocco - 14. SGS, Ankara, Anatolia, Turkey - 15. SGS Australia Mineral Services, Perth, WA, Australia - 16. SGS de Mexico SA de CV, Cd. Industrial, Durango, Mexico - 17. Shiva Analyticals Ltd, Bangalore North, Karnataka, India - 18. Stewart Assay & Environmental Laboratories LLC, Kara-Balta, Chüy, Kyrgyzstan Please note: To maintain anonymity of participating laboratories, the alphabetical list above does not correspond to the Lab ID numbers shown in the scatter plots below. COA-1939-OREAS 145-R0 Page: 15 of 25 COA-1939-OREAS 145-R0 Page: 16 of 25 COA-1939-OREAS 145-R0 Page: 17 of 25 COA-1939-OREAS 145-R0 Page: 18 of 25 COA-1939-OREAS 145-R0 Page: 19 of 25 COA-1939-OREAS 145-R0 Page: 20 of 25 #### PREPARER AND SUPPLIER Certified reference material OREAS 145 is prepared, certified and supplied by: ORE Research & Exploration Pty Ltd Tel: +613-9729 0333 37A Hosie Street Web: www.oreas.com Bayswater North VIC 3153 Email: info@ore.com.au **AUSTRALIA** ## **METROLOGICAL TRACEABILITY** The interlaboratory results that underpin the certified values are metrologically traceable to the international measurement scale (SI) of mass (either as a % mass fraction or as milligrams per kilogram (mg/kg)) [14]. In line with popular use, all data within tables in this certificate are expressed as the mass fraction in either weight percent (wt.%) or parts per million (ppm). The analytical samples sent to participating laboratories were selected in a manner to be representative of the entire prepared batch of CRM. This representativeness was maintained in each submitted laboratory sample batch and ensures the user that the data is traceable from sample selection through to the analytical results. The systematic sampling method was chosen due to the low risk of overlooking repetitive effects or trends in the batch due to the way the CRM was processed. In line with ISO 17025 [8], each analytical data set received from the participating laboratories has been validated by its assayer through the inclusion of internal reference materials and QC checks during and post analysis. Participating laboratories were selected based on demonstrated analytical competence, including prior performance in interlaboratory comparison programs conducted by ORE Pty Ltd, with consideration given to their expertise in relevant analytical methods, measurands, and sample matrices. For the measurands reported in this certificate (Table 1), data were sourced from laboratories accredited to ISO/IEC 17025. Where formal accreditation was not held for specific operationally defined measurands, metrological traceability was verified through the use of well-characterised, independently certified reference materials (CRMs) included as control samples in the round robin study. In accordance with ISO 33405:2024-05 [4], clause 9.2.5, and ISO 17034:2016 [8], clause 7.12.4 b), the use of such control samples provides an acceptable means of demonstrating traceability in the absence of formal accreditation. In this certification program, traceability was further supported by the agreement of measured values for control samples with their known certified values, thereby offering additional confidence in the calibration and validity of measurement results across participating laboratories. # **Operationally Defined Measurands** In accordance with ISO 33405:2024-05, Clause 9.2.4, measurands (analytes) may be certified as operationally defined. For these measurands, traceability to the SI may not be achievable because the analytical procedure involves sample transformations (e.g., leaching or extraction). While instrument calibration can be traceable to appropriate units, the transformation steps themselves are not directly traceable and can only be evaluated through reference comparisons or harmonized procedures. Accordingly, characterisation of these measurands has been based on the concordance of results
obtained from multiple laboratories using a common, well-defined procedure. This approach ensures fitness-for-purpose and fulfils the requirements for metrological traceability as specified in ISO 17034 and ISO 33405 for operationally defined measurands. # **COMMUTABILITY** The certified values reported herein are derived from measurements performed using analytical methods involving sample pre-treatment steps, such as fusion or acid digestion. These processes convert the sample matrix into a chemically simplified and stable form, facilitating calibration traceable to primary standards via solution-based calibration protocols. Due to the established robustness and effectiveness of these pre-treatment methods, issues related to commutability are not expected to impact the suitability of this Certified Reference Material (CRM) for its intended use (cf. ISO/TR 16476:2016, Clause 5.2.3). OREAS CRMs are prepared from natural ore materials, ensuring the presence of matrix and mineralogical characteristics representative of typical exploration and process samples. Consistent with ISO 17034:2016 and ISO Guide 30, users are advised to select CRMs with matrix and mineralisation styles closely matching those of their routine samples to minimize matrix effects and enhance analytical comparability. Detailed descriptions of the CRM's source material and mineralogical characteristics are provided in the 'Source Material' section to guide appropriate CRM selection. # **INTENDED USE** OREAS 145 is intended to cover all activities needed to produce a measurement result. This includes extraction, possible separation steps and the actual measurement process (the signal producing step). OREAS 145 may be used to calibrate the entire procedure by producing a pure substance CRM transformed into a calibration solution. OREAS 145 is intended for the following uses: - For the monitoring of laboratory performance in the analysis of analytes reported in Table 1 in geological samples; - For the verification/ validation of analytical methods for analytes reported in Table 1; - For the calibration of instruments used in the determination of the concentration of analytes reported in Table 1. When a value provided in this certificate is used to calibrate a measurement process, the uncertainty associated with that value should be appropriately propagated into the user's uncertainty calculation. Users can determine an approximation of the standard uncertainty by calculating one fourth of the width of the Expanded Uncertainty interval given in this certificate (Expanded Uncertainty intervals are provided in Table 1). ## MINIMUM SAMPLE SIZE To relate analytical determinations to the values in this certificate, the minimum mass of sample used should match the typical mass that the laboratories used in the interlaboratory (round robin) certification program. This means that different minimum sample masses should be used depending on the operationally defined methodology as follows: - Borate fusion with X-ray fluorescence finish: ≥0.2 g; - Loss on Ignition (LOI) at 1000 °C: ≥1 g; - Borate fusion /Sodium peroxide with ICP-OES and/or MS finish: ≥0.2 g; - 4-acid digestion with ICP-OES and/or MS finish: ≥ 0.25 g. # PERIOD OF VALIDITY & STORAGE INSTRUCTIONS The certification of OREAS 145 remains valid, within the specified measurement uncertainties, until at least September 2039, provided the CRM is handled and stored in accordance with the instructions given below. This certification is nullified if the CRM is any way changed or contaminated. Store in a clean and cool dry place away from direct sunlight. Long-term stability will be monitored at appropriate intervals and purchasers notified if any changes are observed. The period of validity may well be indefinite and will be reassessed prior to expiry with the aim of extending the validity if possible. ## Single-use sachets OREAS 145 is packaged in single-use, 10 g laminated foil sachets. Following analysis, it is the manufacturer's expectation that any remaining material is discarded. It is the user's responsibility to prevent contamination and avoid prolonged exposure of the sample to the atmosphere prior to analysis. #### INSTRUCTIONS FOR HANDLING & CORRECT USE Fine powders pose a risk to eyes and lungs and therefore standard precautions including the use of safety glasses and dust masks are advised. Pre-homogenisation of the CRM prior to subsampling and analysis is not necessary as there is no particle segregation under transport [11]. As per routine analysis at commercial laboratories, the certified values derived by borate fusion with XRF finish are on a dry sample basis. Analytes by all other methods refer to the concentration levels in the packaged state. There is no need for drying prior to weighing and analysis for these methods. #### **Authoritative Source of Information** This Certificate of Analysis constitutes the primary and authoritative document for the certified values, associated expanded uncertainties, and their correct use. While the accompanying DataPack provides supporting information, including raw data and uncertainty estimates with additional significant figures, these extended figures are provided solely for transparency, convenience and statistical reference. Users must rely exclusively on the values stated in this Certificate, rounded to an appropriate number of significant figures, for all metrological and analytical purposes. Any discrepancy between values presented in the DataPack and those in this Certificate shall be resolved in favour of the information provided herein. # QC monitoring using multiples of the Standard Deviation (SD) In the application of SD's in monitoring performance it is important to note that not all laboratories function at the same level of proficiency and that different methods in use at a particular laboratory have differing levels of precision. Each laboratory has its own inherent SD (for a specific concentration level and analyte-method pair) based on the analytical process and this SD is not directly related to the round robin program. The majority of data generated in the round robin program was produced by a selection of world class laboratories. The SD's thus generated are more constrained than those that would be produced across a randomly selected group of laboratories. To produce more generally achievable SD's the 'pooled' SD's provided in this report include interlaboratory bias. This 'one size fits all' approach may require revision at the discretion of the QC manager concerned following careful scrutiny of QC control charts. The performance gates shown in Table 5 are intended only to be used as a preliminary guide as to what a laboratory may be able to achieve. Over a period of time monitoring your own laboratory's data for this CRM, SD's should be calculated directly from your own laboratory's process. This will enable you to establish more specific performance gates that are fit for purpose for your application as well as the ability to monitor bias. If your long-term trend analysis shows an average value that is within the 95 % expanded uncertainty then generally there is no cause for concern in regard to bias. ## **LEGAL NOTICE** Ore Research & Exploration Pty Ltd has prepared and statistically evaluated the property values of this reference material to the best of its ability. The Purchaser by receipt hereof releases and indemnifies Ore Research & Exploration Pty Ltd from and against all liability and costs arising from the use of this material and information. © COPYRIGHT Ore Research & Exploration Pty Ltd. Unauthorised copying, reproduction, storage or dissemination is prohibited. ## **DOCUMENT HISTORY** | Revision No. | Date | Changes applied | |--------------|------------------------------|--------------------| | 0 | 4 th August, 2025 | First publication. | ## **CERTIFYING OFFICER** Craig Hamlyn (B.Sc. Hons - Geology), Technical Manager - ORE P/L ## **QMS CERTIFICATION** ORE Pty Ltd is accredited for compliance with ISO 17034:2016 (Accreditation number 20483). COA-1939-OREAS 145-R0 Page: 24 of 25 ORE Pty Ltd is ISO 9001:2015 certified by Lloyd's Register Quality Assurance Ltd for its quality management system including development, manufacturing, certification and supply of CRMs. # REFERENCES - [1] Govett, G.J.S. (1983). Handbook of Exploration Geochemistry, Volume 2: Statistics and Data Analysis in Geochemical Prospecting (Variations of accuracy and precision). - [2] ISO Guide 30:2015. Terms and definitions used in connection with reference materials. - [3] ISO 33401:2024-01. Reference materials Contents of certificates, labels and accompanying documentation. - [4] ISO 33405:2024-05. Reference materials Approaches for characterization and assessment of homogeneity and stability. - [5] ISO Guide 98-3:2008. Guide to the expression of uncertainty in measurement (GUM:1995). - [6] ISO 16269:2014. Statistical interpretation of data Part 6: Determination of statistical tolerance intervals. - [7] ISO 17025:2017, General requirements for the competence of testing and calibration laboratories. - [8] ISO 17034:2016. General requirements for the competence of reference material producers. - [9] Munsell Rock Color Book (2014). Rock-Color Chart Committee, Geological Society of America (GSA), Minnesota (USA). - [10] OREAS-BUP-70-09-11: Statistical Analysis OREAS Evaluation Method. - [11] OREAS-TN-04-1498: Stability under transport; an experimental study of OREAS CRMs. - [12] OREAS-TN-05-1674: Long-term storage stability; an experimental study of OREAS CRMs. - [13] Thompson, A.; Taylor, B.N. (2008); Guide for the Use of the International System of Units (SI); NIST Special Publication 811; U.S. Government Printing Office: Washington, DC; available at: https://physics.nist.gov/cuu/pdf/sp811.pdf (accessed Nov 2021). - [14] Van der Veen A.M.H. et al. (2001). Uncertainty calculations in the certification of reference materials, Accred Qual
Assur 6: 290-294.