

CERTIFICATE OF ANALYSIS FOR

CERTIFIED REFERENCE MATERIAL
OREAS L13b

Gold Ore (Agate Creek Gold Mine, Australia)

Table 1. Certified Values, Uncertainty & Tolerance Intervals in OREAS L13b.

Constituent	Certified Value	95% Expanded Uncertainty		95% Tolerance Limits	
		Low	High	Low	High
Pb Fire Assay					
Au, Gold (ppm)	1.42	1.40	1.43	1.41*	1.42*

SI unit equivalents: ppm (parts per million; 1×10^{-6}) \equiv mg/kg.

*Gold Tolerance Limits for typical 30g fire assay are determined from 20×85 mg INAA results and the Sampling Constant (Ingamells & Switzer, 1973).

Note: intervals may appear asymmetric due to rounding.

Accredited for compliance with ISO 17034

COA-2047-OREAS L13b-R1
BUP-70-10-03 Ver:1.0

12-Jan-2026

Table 2. Indicative Values for OREAS L13b.

Constituent	Unit	Value	Constituent	Unit	Value	Constituent	Unit	Value
Borate Fusion XRF								
Al ₂ O ₃	wt.%	12.49	Fe ₂ O ₃	wt.%	7.55	SiO ₂	wt.%	65.41
As	ppm	< 10	K ₂ O	wt.%	1.87	Sn	ppm	7.50
BaO	ppm	580	MgO	wt.%	4.14	SO ₃	wt.%	0.298
CaO	wt.%	4.10	MnO	wt.%	0.083	SrO	ppm	250
Cl	ppm	15.0	Na ₂ O	wt.%	1.78	TiO ₂	wt.%	1.16
Co	ppm	30.0	Ni	ppm	110	V ₂ O ₅	ppm	235
Cr ₂ O ₃	ppm	270	P ₂ O ₅	wt.%	0.216	Zn	ppm	100
Cu	ppm	45.0	Pb	ppm	20.0	ZrO ₂	ppm	315
Thermogravimetry								
LOI ¹⁰⁰⁰	wt.%	0.740						
Infrared Combustion								
C	wt.%	0.045	S	wt.%	0.120			
Laser Ablation ICP-MS								
Ag	ppm	0.600	Hf	ppm	6.22	Sn	ppm	2.20
As	ppm	3.70	Ho	ppm	0.99	Sr	ppm	203
Ba	ppm	513	In	ppm	0.038	Ta	ppm	1.11
Be	ppm	1.60	La	ppm	28.4	Tb	ppm	0.85
Bi	ppm	0.15	Lu	ppm	0.35	Te	ppm	< 0.2
Cd	ppm	< 0.1	Mn	wt.%	0.063	Th	ppm	9.09
Ce	ppm	57	Mo	ppm	2.60	Ti	wt.%	0.689
Co	ppm	25.2	Nb	ppm	16.1	Tl	ppm	0.80
Cr	ppm	170	Nd	ppm	27.8	Tm	ppm	0.40
Cs	ppm	4.70	Ni	ppm	85	U	ppm	2.08
Cu	ppm	32.0	Pb	ppm	11.0	V	ppm	119
Dy	ppm	4.87	Pr	ppm	7.16	W	ppm	1.98
Er	ppm	2.71	Rb	ppm	78	Y	ppm	25.2
Eu	ppm	1.34	Re	ppm	< 0.01	Yb	ppm	2.59
Ga	ppm	16.6	Sb	ppm	1.00	Zn	ppm	85
Gd	ppm	5.30	Sc	ppm	14.8	Zr	ppm	224
Ge	ppm	1.35	Sm	ppm	5.88			

SI unit equivalents: ppm (parts per million; 1×10^{-6}) \equiv mg/kg; wt.% (weight per cent) \equiv % (mass fraction).

Note: the number of significant figures reported is not a reflection of the level of certainty of stated values. They are instead an artefact of ORE's in-house CRM-specific LIMS.

TABLE OF CONTENTS

INTRODUCTION	4
SOURCE MATERIAL.....	4
COMMINUTION AND HOMOGENISATION PROCEDURES	4
PHYSICAL PROPERTIES	5
ANALYTICAL PROGRAM.....	5
STATISTICAL ANALYSIS.....	5
Certified Values and their uncertainty intervals	5
Indicative (uncertified) values.....	5
Homogeneity Evaluation	6
PERFORMANCE GATES	7
PREPARER AND SUPPLIER	8
PARTICIPATING LABORATORIES.....	9
METROLOGICAL TRACEABILITY	11
COMMUTABILITY	12
INTENDED USE	12
MINIMUM SAMPLE SIZE	12
PERIOD OF VALIDITY & STORAGE INSTRUCTIONS	13
INSTRUCTIONS FOR HANDLING & CORRECT USE.....	13
LEGAL NOTICE	14
DOCUMENT HISTORY	14
CERTIFYING OFFICER.....	15
QMS CERTIFICATION	15
REFERENCES	15

LIST OF TABLES

Table 1. Certified Values, Uncertainty & Tolerance Intervals in OREAS L13b.....	1
Table 2. Indicative Values for OREAS L13b.....	2
Table 3. Physical properties of OREAS L13b.	5
Table 4. Neutron Activation Analysis of Au on 20 x 85 mg subsamples	7
Table 5. Performance Gates for OREAS L13b.	8

LIST OF FIGURES

Figure 1. Au by Pb Fire Assay in OREAS L13b	10
---	----

INTRODUCTION

The OREAS L Series of gold ore reference materials are intended to provide a low-cost method of evaluating and improving the quality of analysis of geological gold ore samples. For laboratory analysts they provide an effective means of calibrating analytical equipment, assessing new techniques and routinely monitoring in-house procedures. OREAS reference materials enable users to successfully achieve process control of these tasks because the observed variance from repeated analysis has its origin almost exclusively in the analytical process rather than the reference material itself. In evaluating laboratory performance with this CRM, the section headed 'Instructions for handling and correct use' should be read carefully.

Table 1 presents the certified values together with their associated 95 % expanded uncertainty and tolerance intervals. Table 2 provides indicative values, including major and trace element characterisation, Table 3 lists indicative physical properties, gold homogeneity, assessed by INAA, is shown in Table 4 and is further demonstrated through a nested ANOVA (see *Homogeneity Evaluation* section). Finally, Table 5 presents the performance gate intervals for all certified values.

Tabulated results of all analytes together with uncorrected means, medians, standard deviations, relative standard deviations and per cent deviation of laboratory means from the corrected mean of means (PDM³) are presented in the detailed certification data for this CRM (**OREAS L13b-DataPack.1.1.260106_200639.xlsx**). The certified values and uncertainties in this Certificate are the sole authoritative figures. Any additional significant figures in the DataPack are provided for reference only and do not affect the certified results.

Results are also presented in scatter plots for Au by Pb fire assay in Figure 1 together with $\pm 3\text{SD}$ (magenta) and $\pm 5\%$ (yellow) control lines and certified value (green line). Accepted individual results are coloured blue and individual and dataset outliers are identified in red and violet, respectively.

SOURCE MATERIAL

OREAS L13b was prepared from a blend of high-grade gold-bearing ore, barren metasediments and basalt. The gold ore was sourced from the Agate Creek Gold Mine in Queensland, Australia. Agate Creek's gold deposits are hosted mainly in Permian volcanic rocks (rhyolite and andesite) of the Agate Creek Volcanic Group. The mineralisation is characterised predominantly by a low-sulphidation epithermal gold system, with gold occurring in quartz-chalcedony veins, stockworks and breccias developed in and around volcanic dykes and shallowly dipping faults.

COMMINTION AND HOMOGENISATION PROCEDURES

The materials constituting OREAS L13b was prepared in the following manner:

- Drying of ores and barren materials to constant mass at 105 °C;
- Crushing and multi-stage milling of the barren materials to >98 % minus 75 microns;
- Crushing and multi-stage milling of the ores to 100 % minus 30 microns;
- Blending the ores and barren materials in appropriate proportions to achieve the desired Au grade;

- Homogenisation using OREAS' novel processing technologies;
- Packaging in 2.5 Kg units in plastic wide-mouth jars.

PHYSICAL PROPERTIES

OREAS L13b was tested at ORE Research & Exploration Pty Ltd's onsite facility for various physical properties. Table 3 presents these findings that should be used for informational purposes only.

Table 3. Physical properties of OREAS L13b.

Bulk Density (kg/m ³)	Moisture (wt.%)	Munsell Notation [‡]	Munsell Color [‡]
809	0.46	N8	Very Light Gray

[‡]The Munsell Rock Color Chart helps geologists and archeologists communicate with colour more effectively by cross-referencing ISCC-NBS colour names with unique Munsell alpha-numeric colour notations for rock colour samples.

ANALYTICAL PROGRAM

Thirty-nine commercial analytical laboratories participated in the program to certify gold by lead collection fire assay (Table 1) using 25-50g charge weights with AAS (32 laboratories) and ICP-OES (6 laboratories) and ICP-MS (1 laboratory) finish.

For the round robin program, twenty 3 kg test units were collected at predetermined intervals during the bagging stage, immediately after homogenisation. Each participating laboratory received six test portions. The samples received by each laboratory were obtained by taking a 110 g sample from six different 3 kg test units to maximise representation.

The 20 individual INAA results upon which much of the homogeneity evaluation is based, included paired 10g samples taken from every odd numbered sampling unit. This format enabled a nested ANOVA treatment of the INAA results to evaluate homogeneity (see 'Homogeneity Evaluation' section below).

STATISTICAL ANALYSIS

Certified Values and their uncertainty intervals (Table 1) have been determined for each analyte following removal of individual, laboratory dataset (batch) and 3SD outliers (single iteration). Outlier evaluation was conducted in accordance with ISO 17034:2017 and ISO 33405:2024. While formal statistical tests were applied, professional statistical judgment was also exercised in determining the validity of potential outliers.

95% Expanded Uncertainty provides a 95 % probability that the true value of the analyte under consideration lies between the upper and lower limits and is calculated according to the method outlined in [5] and [15]. All known or suspected sources of bias have been investigated or taken into account.

Indicative (uncertified) values (Table 2) are present where the number of laboratories reporting a particular analyte is insufficient (< 5) to support certification or where interlaboratory consensus is poor. This data is intended for 'informational purposes' only.

Standard Deviation intervals (see Table 5, ‘Performance Gates’) provide an indication of a level of performance that might reasonably be expected from a laboratory being monitored by this CRM in a QA/QC program. They take into account errors attributable to measurement uncertainty and CRM variability. For an effective CRM the contribution of the latter should be negligible in comparison to measurement errors. The Standard Deviation values include all sources of measurement uncertainty: between-lab variance, within-run variance (precision errors) and CRM variability.

The SD for each analyte’s certified value is calculated from the same filtered data set used to determine the certified value, i.e., after removal of all individual, lab dataset (batch) and 3SD outliers (single iteration). These outliers can only be removed after the absolute homogeneity of the CRM has been independently established, i.e., the outliers must be confidently deemed to be analytical rather than arising from inhomogeneity of the CRM. ***The standard deviation is then calculated for each analyte from the pooled accepted analyses generated from the certification program.***

Homogeneity Evaluation

The homogeneity of gold has been determined by INAA at ANSTO using the reduced analytical subsample method which utilises the known relationship between standard deviation and analytical subsample weight (Ingamells and Switzer, 1973 [2]). In this approach the sample aliquot is substantially reduced to a point where most of the variability in replicate assays should be due to inhomogeneity of the reference material and measurement error becomes negligible. Table 4 below shows the gold INAA data determined on 20 x 85mg subsamples of OREAS L13b. An equivalent scaled version of the results is also provided to demonstrate an appreciation of what this data means if 30g fire assays were undertaken without the normal measurement error associated with this methodology. In this instance, the 1RSD of 0.16% calculated for a 30g fire assay sample (2.90% at 85 mg weights) confirms the high level of gold homogeneity in OREAS L13b.

The homogeneity of OREAS L13b has also been evaluated in an Analysis of Variance (**ANOVA**) of the INAA data. The 20 samples were comprised of paired samples from each of the ten odd numbered sampling lot intervals and were randomised prior to assigning sample numbers. The duplicate samples enabled an ANOVA by comparison of within- and between-unit variances across the 10 pairs. The purpose of the ANOVA is to test that no statistically significant difference exists in the variance between units to that of the variance within units. This allows an assessment of homogeneity across the entire prepared batch of OREAS L13b. The test was performed using the following parameters:

- Gold INAA – 20 results (1 laboratory providing duplicate analyses on 10 samples where each sample can be viewed as a ‘unit’);
- Null Hypothesis, H_0 : Between-unit variance is no greater than within-unit variance (reject H_0 if p -value < 0.05);
- Alternative Hypothesis, H_1 : Between-unit variance is greater than within-unit variance.

The data was not filtered for outliers prior to the calculation of the p -value. This process derived a p -value of 0.44, a statistically insignificant result so the Null Hypothesis is accepted.

Table 4. Neutron Activation Analysis of Au (in ppm) on 20 x 85 mg subsamples and showing the equivalent results scaled to a 30 g sample mass typical of fire assay determination.

Replicate No	Au 85 mg actual	Au 30 g equivalent*
1	1.440	1.480
2	1.472	1.481
3	1.513	1.484
4	1.457	1.480
5	1.522	1.484
6	1.502	1.483
7	1.470	1.481
8	1.471	1.481
9	1.480	1.482
10	1.395	1.477
11	1.524	1.484
12	1.512	1.483
13	1.470	1.481
14	1.584	1.487
15	1.539	1.485
16	1.453	1.480
17	1.435	1.479
18	1.493	1.482
19	1.438	1.479
20	1.467	1.481
Mean	1.482	1.482
Median	1.472	1.481
Std Dev.	0.043	0.002
Rel.Std.Dev.	2.90%	0.16%

*Results calculated for a 30 g equivalent sample mass using the formula: $x^{30g\ Eq} = \frac{(x^{INAA} - \bar{X}) \times RSD@30g}{RSD@85mg} + \bar{X}$

where $x^{30g\ Eq}$ = equivalent result calculated for a 30 g sample mass

(x^{INAA}) = raw INAA result at 85mg

\bar{X} = mean of 85 mg INAA results

It is important to note that ANOVA is not an absolute measure of homogeneity. Rather, it establishes whether or not the analytes are distributed in a similar manner throughout the packaging run of OREAS L13b and whether the variance between two subsamples from the same unit is statistically distinguishable from the variance of two subsamples taken from any two separate units. A reference material therefore can possess poor absolute homogeneity yet still pass a relative homogeneity (ANOVA) test if the within-unit heterogeneity is large and similar across all units. Based on the statistical analysis of ANOVA and the results of the interlaboratory certification program, it can be concluded that OREAS L13b is fit-for-purpose as a certified reference material (see 'Intended Use' below).

PERFORMANCE GATES

Table 5 below shows intervals calculated for two and three standard deviations. As a guide these intervals may be regarded as warning or rejection for multiple 2SD outliers, or rejection for individual 3SD outliers in QC monitoring, although their precise application should be at the discretion of the QC manager concerned (also see 'Intended Use' section below). Westgard Rules extend the basics of single-rule QC monitoring using multi-rules (for more

information visit www.westgard.com/mltirule.htm). A second method utilises a 5 % window calculated directly from the certified value.

Standard deviation is also shown in relative percent for one, two and three relative standard deviations (1RSD, 2RSD and 3RSD) to facilitate an appreciation of the magnitude of these numbers and a comparison with the 5 % window. Caution should be exercised when concentration levels approach lower limits of detection of the analytical methods employed as performance gates calculated from standard deviations tend to be excessively wide whereas those determined by the 5 % method are too narrow. One approach used at commercial laboratories is to set the acceptance criteria at twice the detection level (DL) $\pm 10\%$.

i.e., Certified Value $\pm 10\% \pm 2DL$ [1].

Table 5. Performance Gates for OREAS L13b.

Constituent	Certified Value	Absolute Standard Deviations					Relative Standard Deviations			5 % window	
		1SD	2SD Low	2SD High	3SD Low	3SD High	1RSD	2RSD	3RSD	Low	High
Pb Fire Assay											
Au, ppm	1.42	0.040	1.33	1.50	1.29	1.54	2.84%	5.68%	8.51%	1.34	1.49

SI unit equivalents: ppm (parts per million; 1×10^{-6}) \equiv mg/kg.

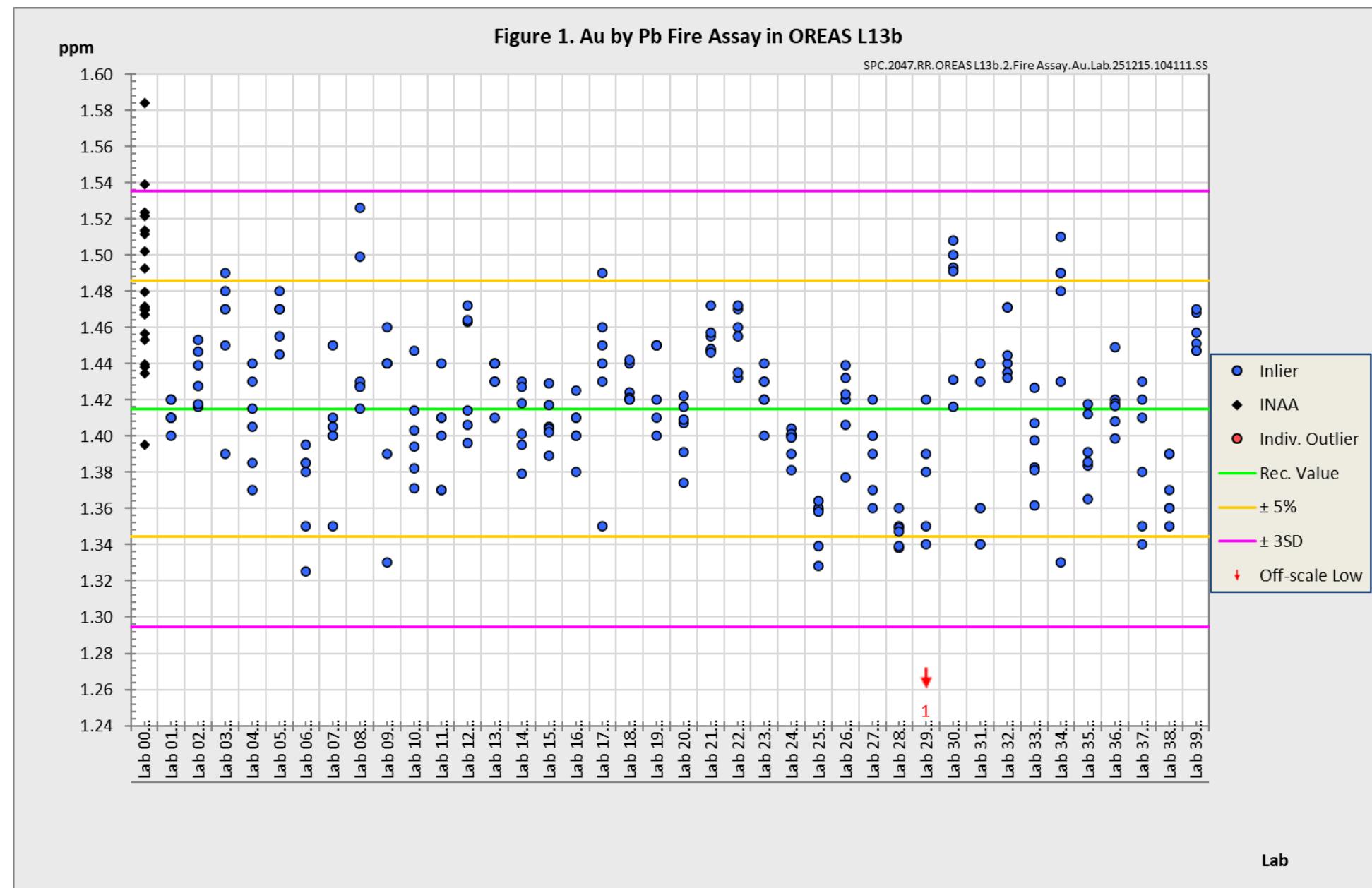
Note 1: intervals may appear asymmetric due to rounding; IND = indeterminate.

Note 2: the number of decimal places quoted does not imply accuracy of the certified value to this level but are given to minimise rounding errors when calculating 2SD and 3SD windows.

PREPARER AND SUPPLIER

Certified reference material OREAS L13b is prepared, certified and supplied by:

ORE Research & Exploration Pty Ltd
37A Hosie Street
Bayswater North VIC 3153
AUSTRALIA


Tel: +613-9729 0333
Web: www.oreas.com
Email: info@ore.com.au

PARTICIPATING LABORATORIES

1. Actlabs, Ancaster, Ontario, Canada
2. Alex Stewart International, Mendoza, Argentina
3. ALS, Johannesburg, South Africa
4. ALS, Lima, Peru
5. ALS, Loughrea, Galway, Ireland
6. ALS, Malaga, WA, Australia
7. ALS, Vancouver, BC, Canada
8. American Assay Laboratories, Sparks, Nevada, USA
9. ANSTO, Lucas Heights, NSW, Australia
10. ARGETEST Mineral Processing, Ankara, Central Anatolia, Turkey
11. BUREAU VERITAS AZERI LLC, Baku, Azerbaijan
12. Bureau Veritas Commodities and Trade, Inc., Sparks, Nevada, USA
13. Bureau Veritas Commodities Canada Ltd, Vancouver, BC, Canada
14. Bureau Veritas Geoanalytical, Perth, WA, Australia
15. Bureau Veritas Minerals, Ankara, Central Anatolia, Turkey
16. Bureau Veritas Minerals, Hermosillo, Sonora, Mexico
17. BV Coquimbo Laboratory, Coquimbo, Elqui, Chile
18. BV Quito, Quito, Pichincha, Ecuador
19. CERTIMIN, Lima, Peru
20. Geoanalitica, Antofagasta, Chile
21. Inspectorate (BV), Lima, Peru
22. Intertek, Cupang, Muntinlupa, Philippines
23. Intertek, Perth, WA, Australia
24. Intertek, Townsville, QLD, Australia
25. Intertek Genalysis, Adelaide, SA, Australia
26. Intertek Minerals Ltd, Tarkwa, Western Region, Ghana
27. MSALABS, Vancouver, BC, Canada
28. On Site Laboratory Services, Bendigo, VIC, Australia
29. Paragon Geochemical Laboratories, Sparks, Nevada, USA
30. PT BVI Lab Manado, Kabupaten Minahasa Utara, Sulawesi Utara, Indonesia
31. PT Geoservices Ltd, Cikarang, Jakarta Raya, Indonesia
32. PT Intertek Utama Services, Jakarta Timur, DKI Jakarta, Indonesia
33. Saskatchewan Research Council, Saskatoon, Saskatchewan, Canada
34. SGS Australia Mineral Services, Perth, WA, Australia
35. SGS Canada Inc., Vancouver, BC, Canada
36. SGS del Peru, Lima, Peru
37. SGS Geosol Laboratorios Ltda, Vespasiano, Minas Gerais, Brazil
38. SGS Tarkwa, Tarkwa, Western Region, Ghana
39. Shiva Analyticals Ltd, Bangalore North, Karnataka, India
40. Stewart Assay & Environmental Laboratories LLC, Kara-Balta, Chüy, Kyrgyzstan

Please note: To maintain anonymity of participating laboratories, the alphabetical list above does not correspond to the Lab ID numbers shown in the scatter plots below.

Figure 1. Au by Pb Fire Assay in OREAS L13b

METROLOGICAL TRACEABILITY

The interlaboratory results that underpin the certified values are metrologically traceable to the international measurement scale (SI) of mass (as milligrams per kilogram (mg/kg)) [14]. In line with popular use, all data within tables in this certificate are expressed as the mass fraction in parts per million (ppm).

The analytical samples sent to participating laboratories were selected in a manner to be representative of the entire prepared batch of CRM. This representativeness was maintained in each submitted laboratory sample batch and ensures the user that the data is traceable from sample selection through to the analytical results. The systematic sampling method was chosen due to the low risk of overlooking repetitive effects or trends in the batch due to the way the CRM was processed. In line with ISO 17025 [8], each analytical data set received from the participating laboratories has been validated by its assayer through the inclusion of internal reference materials and QC checks during and post analysis.

Participating laboratories were selected based on demonstrated analytical competence, including prior performance in interlaboratory comparison programs conducted by ORE Pty Ltd, with due consideration given to expertise in the relevant analytical method, measurand, and sample matrix. For the measurand reported in this certificate (Table 1), data were obtained from laboratories accredited to ISO/IEC 17025. Where formal accreditation was not held (in two cases), metrological traceability was verified through the use of well-characterised, independently certified reference materials (CRMs) included as control samples in the round-robin study.

In accordance with ISO 33405:2024-05 [5], Clause 9.2.5, and ISO 17034:2016 [9], Clause 7.12.4 b), the use of such control samples constitutes an acceptable means of demonstrating metrological traceability in the absence of formal accreditation. In this certification program, traceability was further supported by agreement between the measured values obtained for the control samples and their assigned certified values, providing additional confidence in the calibration status and validity of measurement results across the participating laboratories.

Operationally Defined Measurands

In accordance with ISO 33405:2024-05, Clause 9.2.4, measurands (analytes) may be certified as operationally defined. For these measurands, traceability to the SI may not be achievable because the analytical procedure involves sample transformations (e.g., fire assay involving sequential transformation of the sample through fusion, lead button formation, cupellation to produce an Au/Ag bead, and subsequent dissolution prior to instrumental measurement). While instrument calibration can be traceable to appropriate units, the transformation steps themselves are not directly traceable and can only be evaluated through reference comparisons or harmonised procedures.

Accordingly, characterisation of the measurand is based on the concordance of results obtained from multiple laboratories using a common, well-defined procedure. This approach ensures fitness-for-purpose and fulfils the requirements for metrological traceability as specified in ISO 17034 and ISO 33405 for operationally defined measurands.

COMMUTABILITY

The certified values reported herein are derived from measurements performed using analytical methods involving sample pre-treatment steps, such as fusion or acid digestion. These processes convert the sample matrix into a chemically simplified and stable form, facilitating calibration traceable to primary standards via solution-based calibration protocols. Due to the established robustness and effectiveness of these pre-treatment methods, issues related to commutability are not expected to impact the suitability of this Certified Reference Material (CRM) for its intended use.

OREAS CRMs are prepared from natural ore materials, ensuring the presence of matrix and mineralogical characteristics representative of typical exploration and process samples. Consistent with ISO 17034:2016 and ISO Guide 30, users are advised to select CRMs with matrix and mineralisation styles closely matching those of their routine samples to minimize matrix effects and enhance analytical comparability. Detailed descriptions of the CRM's source material and mineralogical characteristics are provided in the 'Source Material' section to guide appropriate CRM selection.

INTENDED USE

OREAS L13b is intended to cover all activities needed to produce a measurement result. This includes extraction, possible separation steps and the actual measurement process (the signal producing step). OREAS L13b may be used to calibrate the entire procedure by producing a pure substance CRM transformed into a calibration solution.

OREAS L13b is intended for the following uses:

- For the monitoring of laboratory performance in the analysis of analytes reported in Table 1 in geological samples;
- For the verification/ validation of analytical methods for analytes reported in Table 1;
- For the calibration of instruments used in the determination of the concentration of analytes reported in Table 1. When a value provided in this certificate is used to calibrate a measurement process, the uncertainty associated with that value should be appropriately propagated into the user's uncertainty calculation. Users can determine an approximation of the standard uncertainty by calculating one fourth of the width of the Expanded Uncertainty interval given in this certificate (Expanded Uncertainty intervals are provided in Table 1).

MINIMUM SAMPLE SIZE

To relate analytical determinations to the values in this certificate, the minimum mass of sample used should match the typical mass that the laboratories used in the interlaboratory (round robin) certification program. This means that different minimum sample masses should be used depending on the operationally defined methodology. For Au by fire assay, the minimum sample mass is ≥ 25 g.

PERIOD OF VALIDITY & STORAGE INSTRUCTIONS

The certification of OREAS L13b remains valid, within the specified measurement uncertainties, until at least July 2040, provided the CRM is handled and stored in accordance with the instructions given below. This certification is nullified if the CRM is any way changed or contaminated.

Store in a clean and cool dry place away from direct sunlight.

Long-term stability will be monitored at appropriate intervals and purchasers notified if any changes are observed. The period of validity may well be indefinite and will be reassessed prior to expiry with the aim of extending the validity if possible.

Repeat-use packaging (e.g., 2.5 kg plastic jars)

After taking a subsample, users should replace the lid of the jar promptly and securely to prevent accidental spills and airborne contamination. OREAS L13b contains a non-hygroscopic* matrix with an indicative value for moisture provided to enable users to check for changes to stored material by determining moisture in the user's laboratory and comparing the result to the value in Table 3 in this certificate.

The stability of the CRM in regard to oxidation from the breakdown of sulphide minerals to sulphates is minimal given its negligible sulphur concentration.

*A non-hygroscopic matrix means exposure to atmospheres significantly different, in terms of temperature and humidity, from the climate during manufacturing should have negligible impact on the precision of results. Hygroscopic moisture is the amount of adsorbed moisture (weakly held H₂O- molecules on the surface of exposed material) following exposure to the local atmosphere. Usually, equilibration of material to the local atmosphere will only occur if the material is spread into a thin (~2mm thick) layer and left exposed for a period of 2 hours.

INSTRUCTIONS FOR HANDLING & CORRECT USE

Fine powders pose a risk to eyes and lungs and therefore standard precautions including the use of safety glasses and dust masks are advised.

Pre-homogenisation of the CRM prior to subsampling and analysis is not necessary as there is no particle segregation under transport [12].

The certified value for Au in OREAS L13b refers to the concentration level in the packaged state. There is no need for drying prior to weighing and analysis.

Authoritative Source of Information

This Certificate of Analysis constitutes the primary and authoritative document for the certified value, associated expanded uncertainty, and its correct use. While the accompanying DataPack provides supporting information, including raw data and an uncertainty estimate with additional significant figures, these extended figures are provided solely for transparency, convenience and statistical reference. Users must rely exclusively on the values stated in this Certificate, rounded to an appropriate number of significant figures, for all metrological and analytical purposes. Any discrepancy between values presented in the DataPack and those in this Certificate shall be resolved in favour of the information provided herein.

Notice on Certificate Updates

The version of the Certificate of Analysis (COA) available on the OREAS website is considered the official and most current version. As COAs may be revised following periodic reviews, re-evaluation of data, or the availability of new information, users are strongly advised to refer to the latest online version prior to each use.

It is the user's responsibility to ensure that the most recent and applicable certificate is used to support the traceability, validity, and fitness-for-purpose of the certified reference material (CRM).

Any significant changes to the sections of this certificate will be clearly documented in the revised certificate.

QC monitoring using multiples of the Standard Deviation (SD)

In the application of SD's in monitoring performance it is important to note that not all laboratories function at the same level of proficiency and that different methods in use at a particular laboratory have differing levels of precision. Each laboratory has its own inherent SD (for a specific concentration level and analyte-method pair) based on the analytical process and this SD is not directly related to the round robin program.

The majority of data generated in the round robin program was produced by a selection of world class laboratories. The SD's thus generated are more constrained than those that would be produced across a randomly selected group of laboratories. To produce more generally achievable SD's the 'pooled' SD's provided in this report include interlaboratory bias. This 'one size fits all' approach may require revision at the discretion of the QC manager concerned following careful scrutiny of QC control charts.

The performance gates shown in Table 5 are intended only to be used as a preliminary guide as to what a laboratory may be able to achieve. Over a period of time monitoring your own laboratory's data for this CRM, SD's should be calculated directly from your own laboratory's process. This will enable you to establish more specific performance gates that are fit for purpose for your application as well as the ability to monitor bias. If your long-term trend analysis shows an average value that is within the 95 % expanded uncertainty then generally there is no cause for concern in regard to bias.

LEGAL NOTICE

Ore Research & Exploration Pty Ltd has prepared and statistically evaluated the property values of this reference material to the best of its ability. The Purchaser by receipt hereof releases and indemnifies Ore Research & Exploration Pty Ltd from and against all liability and costs arising from the use of this material and information.

© COPYRIGHT Ore Research & Exploration Pty Ltd.
Unauthorised copying, reproduction, storage or dissemination is prohibited.

DOCUMENT HISTORY

Revision No.	Date	Changes applied
1	12 th January, 2026	Added major and trace element characterisation.
0	17 th December, 2025	First publication.

CERTIFYING OFFICER

Craig Hamlyn (B.Sc. Hons - Geology), Technical Manager - ORE P/L

QMS CERTIFICATION

ORE Pty Ltd is accredited for compliance with ISO 17034:2016 (Accreditation number 20483).

ORE Pty Ltd is ISO 9001:2015 certified by Lloyd's Register Quality Assurance Ltd for its quality management system including development, manufacturing, certification and supply of CRMs.

REFERENCES

- [1] Govett, G.J.S. (1983). Handbook of Exploration Geochemistry, Volume 2: Statistics and Data Analysis in Geochemical Prospecting (Variations of accuracy and precision).
- [2] Ingamells, C. O. and Switzer, P. (1973). A Proposed Sampling Constant for Use in Geochemical Analysis, *Talanta* 20, 547-568.
- [3] ISO Guide 30:2015. Terms and definitions used in connection with reference materials.
- [4] ISO 33401:2024-01. Reference materials – Contents of certificates, labels and accompanying documentation.
- [5] ISO 33405:2024-05. Reference materials – Approaches for characterization and assessment of homogeneity and stability.
- [6] ISO Guide 98-3:2008. Guide to the expression of uncertainty in measurement (GUM:1995).
- [7] ISO 16269:2014. Statistical interpretation of data – Part 6: Determination of statistical tolerance intervals.
- [8] ISO 17025:2017, General requirements for the competence of testing and calibration laboratories.
- [9] ISO 17034:2016. General requirements for the competence of reference material producers.
- [10] Munsell Rock Color Book (2014). Rock-Color Chart Committee, Geological Society of America (GSA), Minnesota (USA).
- [11] OREAS-BUP-70-09-11: Statistical Analysis - OREAS Evaluation Method.
- [12] OREAS-TN-04-1498: Stability under transport; an experimental study of OREAS CRMs.

- [13] OREAS-TN-05-1674: Long-term storage stability; an experimental study of OREAS CRMs.
- [14] Thompson, A.; Taylor, B.N. (2008); Guide for the Use of the International System of Units (SI); NIST Special Publication 811; U.S. Government Printing Office: Washington, DC; available at: <https://physics.nist.gov/cuu/pdf/sp811.pdf> (accessed Nov 2021).
- [15] Van der Veen A.M.H. et al. (2001). Uncertainty calculations in the certification of reference materials, *Accred Qual Assur* 6: 290-294.